ARC 226 CONSTRUCTION SCHEDULING

Chapter 6 Creating the Network Logic Diagram

Introduction

- □ First step in CPM scheduling
 - Develop the logic diagram
 - Durations can then be assigned
 - Also the most important step of the CPM process
 - If the logic diagram is not accurate, the schedule will not be accurate

Project Familiarity

- Study the plans and specs thoroughly
 - General conditions, submittal sections may have specific requirements regarding the schedule
 - http://www.lechase.com/projectcenter/projectfiles/Misc/ 01311.doc
- Consider the project requirements and constraints
 - Site access
 - Methods of construction
 - Equipment needs
 - Where will the project start, what will the progression be?

Project Execution

- There will be a variety of ways to complete the project, which is best?
 - Management team must be familiar with the drawings
 - Determine how the team will move through the project
 - What is the best sequence?
 - Are there unusual or unique aspects of the project?
- How will completion of one portion of the project affect the other activities?
 - Access often an issue

Management Interviews

- Talk with the estimators about problem areas of the project
- Get input from the superintendents and project managers
 - Owner may also have some input
- In general, consult all the members of the project team
- Consulting the subcontractors is a key item

Project Activities

- How detailed should the activities be?
 - Must be small enough to have direction and control
 - Must be large enough to avoid unnecessary detail and confusion
 - Force detailed thinking and communication
- Don't make it too complex, but give it enough detail
- Who is the schedule designed for?
 - What is their level of experience?

Scheduling Subs

- Don't schedule the subs as one single activity
 - Do not make an activity "Electrical" for the duration of the project
 - At least break down the electrical into categories such as the area of the building, the floor, or the phase
 - East wing, 2nd floor, below slab electrical, etc.
- The sup may schedule the details on a weekly basis
 - The PM schedule the summary activities

Procurement Activities

- Should the procurement activities be included on the schedule?
 - Submittals, manufacturing materials, shipping, etc.
 - Shop drawings, samples testing
- If the activity can or has caused problems in the past, include it in the schedule
- Including items in the schedule may help avoid overlooking that item

Work Breakdown Structure

- Defining activities so each activity can be identified by a WBS number
 - Numbering systems are project or company specific
 - Breakdown according to PM, firm, sub, area of work, CSI, phases
- Phases are a common format for the WBS
 - Foundation
 - Footings
 - Layout
 - Excavate
 - Form...
 - Foundation walls

Activity Level Logic Diagram

- Instead of using a WBS, creating a logic diagram and thinking directly on the activity level
 - Action, object, location method
 - Form, footings, north end
 - Provides the necessary communication and control
 - Who, where, what, when are all answered
- □ The level of detail will be evident from experience
 - Is a summary level schedule enough?
 - Project can be broken down later into 3 or 4 week look-ahead schedules

Creating the Logic Diagram

- Node or activity box
 - One box for each activity
 - Each activity box contains a shortened name
 - Also ES, Dur, EF, LS, TF, LF
- Start with the first activity
 - Stamp or draw the activity on a large sheet of paper
- Identify the 2nd activity and establish the relationship
 - Proceed on with activities and logical relationships
 - Establish predecessors, successors, and concurrent activities
 - If the logical relationships are wrong all dates and reports will be incorrect
 - Requires detailed thinking about the construction procedure

Redundant Arrows

- □ Redundant arrows are not necessary
 - Helps eliminate confusion
- □ Given activities A, B, and C
 - If A must be done to start on B, and B must be done to start C, then A must be done to start C
 - If there is an arrow from A to B, and B to C, no arrow is needed from A to C
 - Eliminate logic loops
 - Arrow from A to B to C and back to A
- □ See examples pg. 59-60

Logic Diagram, cont.

- □ The logic diagram is completed so as to represent the procedure of construction for the project
 - Careful thought must be given to sequencing
- Creating the schedule should be a team process
 - Consult the field managers
- The logic diagram construction will be more involved than the bar chart diagram
 - CPM forces detailed thinking about the project

Other Names for the Logic Diagram

- □ Pure logic diagram
- Project Evaluation Review Technique (PERT)
- □ Network view
- Logic diagram is probably the most accurate description

Other Methods for Creating the Logic Diagram

- 15
- Can be created on a computer
 - Difficult to see all of the activities and predecessors and successors
- There will be many revisions to the logic diagram
 - Input from other parties will cause changes
- The logic diagram can also be created from end to beginning
 - What do we need to do before activity X can be completed?
 - Helpful to look at the project both ways
- Rubber stamp, Pos-it notes, mailing labels

Planning

- □ The logic diagram is primarily a planning process
 - The logic diagram is the result
 - □ The final schedule will communicate that result to others
 - The scheduling phase starts after the durations and dates are entered
- Start and end with only one activity
 - Only one activity with no predecessors, one with no successors
 - Helps check the logic

Ensuring Accurate Logic

- Establishing the logic diagram is the most important part of the scheduling process
 - The schedule dates are developed from the logic diagram
 - If the logic diagram does not represent the project sequence, none of the dates will be valid
- At each activity, ask two questions:
 - Does this activity really need to be done before the next activity can start?
 - What other activities need to be done before this activity can start?
- Double check the network diagram

Conclusion

- Logic diagram is the most important scheduling step
- A primary reason schedules are abandoned during construction is because the logic diagram was insufficient or incorrect
- Familiarize yourself with the project
- Involve all management members
- Break down the project into activities (WBS)
- Create a hand drawn network diagram
- If you do not know the proper sequencing or construction process, consult someone who does