ARC 226 Construction Scheduling

1

CHAPTER 18
OTHER SCHEDULING TECHNIQUES

Introduction

- Alternate scheduling methods (vs. CPM)
- Some are other CPM related techniques
- Some are separate stand-alone techniques
- Offer a different format
 - May be more suitable depending on the project or circumstances

3-Week Look Ahead or Short Interval

- Many projects start with a master project
 - A detailed schedule is then produced to cover the next several weeks or months
 - ➤ A common interval is 3 weeks
 - ★ Also called a Short Interval Production Schedule or Construction
 Activity Plan
- It often takes too much time to produce an entire schedule at the beginning of the project with the level of detail as the 3-week look ahead
 - Also allows for another check on planning the project
 - ➤ What do we have to do in the next three weeks?

Schedule Format

- Short interval schedule is often created by the site management
 - Often takes the form of a bar chart
- Allows for greater detail
 - Manpower, equipment, tools, etc. can all be accurately forecast for the upcoming time period
 - May only deal with a specific portion or part of the project
 - The 3-week schedule must still agree with the master schedule
 - ➤ The schedule is still created every week
 - May also be resource loaded

Included Details

- Short interval schedules may include
 - # of workers
 - Material requirements
 - Equipment to be installed or needed for construction
 - Maintenance
 - Owner visits
 - Inspections
 - Safety and progress meetings
 - Production rates
 - Special material tests
- The format can be modified to reflect the needs of the project
 - o Excel, Project, etc.

Hammock Activities

- Hammock activity- spans other activities
 - An activity that takes place in conjunction with other activities
 - Example-
 - ➤ Dewatering done during an excavation and pouring of caissons
 - Dewatering continues until the permanent drainage system is in place
 - ➤ Haul roads that need to be maintained during an excavation

Constraints

- Constraint- restriction or boundary on finish of an activity
 - Used when an activity must meet a certain deadline or when an activity must happen before or after a certain date
 - ➤ Deadlines- (no-later-than constraint)
 - Potential delays- (no-earlier-than constraints)
 - Attached to the start or finish of an activity
 - ➤ Deadline on the start or finish of an activity, potential delay stating an activity can not start or finish before a certain date
- The project is typically scheduled first without constraints
 - Constraints are then added one at a time

Constraints cont.

- Constraints override the CPM logic
 - If a mandatory start is implemented the activity will start regardless of predecessors finishing
 - If the project is ahead of schedule the constrained date will not change
- Most often used for deadlines and delivery dates

Start Constraints

- Specify that an activity can start no earlier or later than a specified date
 - An activity can not begin until a certain piece of equipment is delivered
- If an activity must start by a certain date a late start date constraint is attached

Finish Constraints

- Specify that an activity must finish no earlier or later than a specified date
- Early finish constraint
 - Activity can not finish before a specified date

Mandatory and Start-on Constraints

Mandatory

- Force an activity to establish a definite date for its start or finish
- Activity takes place no matter what on that particular date
- Will override any associated CPM logic

Start-on

- Set the early and late start dates as the same day
- Protects the schedule logic

Expected Finish Constraints

- Force the duration of an activity to depend on its scheduled finish date
 - Duration is calculated from its ES date to the specified expected finish date
 - ➤ A calculated duration may be marked with an asterisk

Float Constraints

- Affect the scheduling of an activity but do not override schedule logic
- Zero total float constraint
 - o Causes an activity to be scheduled as soon as possible
 - Eliminates the float, makes the activity critical
- As late as possible float constraint
 - Schedules an activity to start as late as possible without delaying any successors
 - Eliminates any float from the activity
 - Used for payments and deliverys

Fenced Bar Charts

- Bar chart developed from a CPM network showing logical relationships
 - o Bars and arrows are used instead of boxes and nodes
 - o Gives a balance between a bar chart and a logic diagram
 - May become complex and difficult to read on large projects due to overlapping arrows

Graphic Schedules

- Marked or color coded set of drawings showing the general sequencing of a project
 - Dates can be added for the associated work
 - Arrows can show the general progression through the building
- Simple method, but can still force detailed thinking about the project
 - In general, the graphic schedule shows where and when work is to take place

Matrix Schedules

- Show desired summary information about when certain activities will happen
 - May consist of area rows and activity columns
 - Each cell is then filled with desired info concerning Start,
 Actual Start, Duration, Actual Duration, etc.
- Not a CPM method, so it is not generated by CPM software
 - Simple Excel format
 - Dates are not automatically updated
 - May be good for summary purposes

Activity on Arrow Method

- Used alternatively to activity on node
 - Not supported by most software
 - Initially easier to draw by hand than AON
- Activity description is located on the arrow
 - Nodes represent the beginning and end of an activity
 - All activities coming into the node before and activity coming out of the node can start
- Dummy- shows a relationship but is not an activity
 - Allows for an activity to be a predecessor to more than one string of successors
- Other aspects of AOA are similar to AON, but AOA is not commonly used

PERT

- Project Evaluation and Review Technique
 - Similar method to CPM, but durations are figured as optimistic, most likely, and pessimistic
 - \circ Actual duration = (O + 4L + P)/6
 - Gives the most likely time a weighted average
 - Accounts for some uncertainty with respect to durations
 - ➤ The most likely duration is then calculated using statistical methods
 - A probability for not finishing on time can be calculated
- Not commonly used in the construction industry
 - Monte Carlo Simulation software is the most common

Conclusion

- CPM is the most common method for construction scheduling
- Different projects may have other requirements that make another method or technique useful
- The short interval schedule can help to analyze the upcoming requirements for a project
 - o Manpower, materials, equipment
- Hammock activities give a more accurate representation of a project