

Module 3

Data Manipulation Instructions

Allen Bradley

CompactLogix / ControlLogix

Data Manipulation Instructions 2

Module 3:
Data Manipulation Instructions

Data Manipulation Instructions…………….…………………3

MOV ………………………………………………………….4

MVM ……………………………………… …..……………..5

Array………………………………………….……………….7

COS and CPS………………………….……………………..11

FLL…………………..……….………………………………12

FAL………………..………….………………………………14

Review Questions…………….……………………………….17

Data Manipulation

Data Manipulation Instructions 3

The instructions discussed in this lesson are found in the
Move/Logical tab

Figure 1-A Move Logical Tab

and in the File/Misc. tab.

Figure 2-A File/Misc. Tab

Use the tab scroll arrows to view tabs.

Figure 3-A Tab Scroll Arrows

Use the Instruction scroll arrows to view instruction icons not
shown by default.

Figure 4-A Instruction Scroll Arrows

The following Data Manipulation Instructions will be covered in
this lesson.

Data Manipulation Instructions 4

Word Type
Instructions

File Type Instructions

MOV COP / CPS

MVM FLL

CLR FAL

The MOV Instruction
The MOV (Move) instruction copies the data value from one tag
memory location to another tag memory location in the
ControlLogix / CompactLogix memory. The source data is not
affected by the MOV. This is confusing because from the DOS
days to Windows OS we learned that a Move actually moved the
data from one location to another and a Copy did just that, it
copied data without affecting the source. Well the MOV in Allen
Bradley is a little backwards. It is called a MOV, but it acts like a
copy. The source data is not changed.

A MOV instruction is an output on a ladder rung.

When the MOV instruction is energized (gets logic power flow)
the source value is moved to the destination, as shown in the
following illustration.

Data Manipulation Instructions 5

Figure 5-A. The MOV Instruction.

If the instruction remains true, the MOV will transfer the data
every scan.

The Source can be a constant or a memory location (tag).

The Destination must be a memory location (tag)..

The instruction going false has no effect on the Destination data,
i.e. it does not zero the destination location.

The MVM Instruction
The MVM (Move with Mask – but usually called Masked Move)
instruction is similar in operation to a MOV instruction that will
mask out part of the data. Instead of moving all the bits of the
Source tag, maybe only 12 bits of the Source tag is moved, and the
remaining bits is masked out – not moved.

Data Manipulation Instructions 6

The Mask is many times referred to as the Filter. A “1” in the mask
will pass the corresponding tag source data bit to the destination
tag data bit. A “0” in the mask will not pass the corresponding
source data bit to the destination data bit.

By default the Mask data is viewed in a decimal format (Style). If
you want to enter the mask in another format (Style) you must
precede the mask with one of the prefixes in the following table.

Prefix Description
16# Hexadecimal (ex. 16#00FF)
8# Octal (ex. #8)
2# Binary (ex. 2#0000000011111111)

Table 1-A

The following illustration shows the Masked Move. The data
shown the Binary Style.

Figure 6-A. The MVM (Masked Move) Instruction.

Decimal values are 31333, 4080 and 2656

Data Manipulation Instructions 7

Basic Array Instructions

Tag Information
CompactLogix / ControlLogix stores data in tags, in contrast to
PLC’s and SLC’s that use fixed data files that are numerically
addressed.

Using tags allows you to document your application as you
develop it and it also allows you to use tag names to organize your
data to match your machinery.

While creating tags there are 3 properties that have to be assigned.

1. Scope

 If the tag is going to be available to all the programs that you have
created, select Controller Tag (Controller Scope). If the tag is only
going to be used in one program select Program Tag (Program
Scope).

2. Tag Name

This identifies the data within the Logix 5000 controller. Tags with
different scopes can have the same name, although to avoid
confusion it is not recommended.

3. Data Type

For the tag this defines the organization of the data (ex. Integer,
Bit, floating-point number, Timer, etc.)

Data Manipulation Instructions 8

The following table displays the most common data types and their
uses.

Data Type Most Common Use
REAL Analog device in floating-point mode
INT Analog device in integer mode (for very fast

sample rates)
string ASCII characters
BOOL

Bit

COUNTER Counter
BOOL Digital I/O point
REAL Floating-point number
DINT Integer (whole number)
CONTROL Sequencer
TIMER

Timer

Table 2-A

The following graphic shows the tag monitor / edit window.

Figure 7-A. The Monitor / Edit Tag Window.

Data Manipulation Instructions 9

Tag Arrays
A tag array is a number of consecutive tag memory locations
created in the Logix 5000 tag database. When you need to access
data within one of these memory locations you need to use an
index. An index is a value that is at the end of the tag name and
identifies which one of the array locations (element) to use. The
index can be a constant value or is another tag.
Example: The following tag is using a constant of ‘0’ (index
 value) to identify the first element in the array -
 One_Dim_Array[0].

Note: When using arrays it is important to remember that array
 position number (index) start at 0. So a ten-element array
 will have valid index numbers of 0 through 9.)

The following window is accessed by clicking the ellipse button in
the data type cell of the Tag Monitor / Edit window.

Figure 8-A. The Data Type Window.

Data Manipulation Instructions 10

When creating tag arrays notice in the above graphic that an array
can have three dimensions.

A one-dimension (Dim 0) array can be thought of as one column of
an Excel spreadsheet, when you put a number in the Dim 0 box
you are increasing the number of rows that are contained in the
column. For example if Dim 0 is 10 this means that 10 rows
numbered 0 through 9 are available to store data.
A two-dimension array (Dim 0 and 1) can be thought of as one
spreadsheet in an Excel workbook. When putting a number in
Dim 0 you are increasing the number of rows in the spreadsheet.
When you put a number in Dim 1 you are increasing the number of
columns in the spreadsheet.

For example if Dim 0 is 10 and Dim 1 is 5 this means that 10 rows
numbered 0 through 9 are available to store data and 5 columns
numbered 0 through 4 are also available to store data creates 50
memory locations to store data. To access that memory location
you will need to use two index numbers to identify an array
element.

For example when using the tag ‘Two_Dim_Array [3,4]’ it is
accessing the memory location in row 4, column 5 of the array.
(Note: position numbers in arrays always start at 0.)
A three-dimension array (Dim 0, 1 and 2) can be thought of as an
Excel workbook. When putting a number in Dim 0, increases the
number of rows in the spreadsheet. Putting a number in Dim 1,
increases the number of columns in the spreadsheet. Putting a
number in Dim 2, increases the number of spreadsheets tabs at the
bottom of the workbook. It’s like stacking spreadsheets on top of
each other.

For example when using the tag Three_Dim_Array [1,2,3] it is
accessing the memory location in row 2, column 3, sheet 4 of the
array. (Note: position numbers in arrays always start at ‘0’.)

Data Manipulation Instructions 11

Tags will be discussed in more detail in later Modules.
Note: One-dimension (Dim 0) arrays are most common and are
 required for some instructions

The COP and CPS Instruction
The COP (Copy) and CPS (Synchronous Copy) instructions are
output type of tag array instructions that will copy tag array
elements from one array to a second array. The source data values
remain unchanged.

The difference between these two instructions is: The COP
instruction will allow the data it is copying to be changed during
the execution of the instruction. The CPS instruction will delay any
task that attempts to update the data until the execution of the
instruction has completed.

The following illustration shows a COP and a CPS instruction.
When the COP goes true, the Source tag array data is copied into
the Destination tag array locations.

Data Manipulation Instructions 12

Figure 9-A. The COP and CPS Instructions.

The COP and CPS instructions do not have status bits. As long as
the instruction stays true, the data is re-copied every scan. The
COP and CPS instructions operate on contiguous data memory and
perform a straight byte-to-byte copy. When using these
instructions it requires an understanding of the Logix 5000
memory layout.

The COP and CPS instructions do not write past the end of an
array. If the destination array has fewer memory locations the COP
and CPS instructions will stop at the end of the array. This does
not generate a Major Fault in the processor. That is why it is
important to understand the memory layout.

Data Manipulation Instructions 13

The FLL Instruction – File Fill
The FLL is an output type of instruction that copies a value of a
memory location – tag – (Source) to an array (Dest). The source
data is not affected during the execution of the FLL. This
instruction, like the COP, does not have status bits. For best results
it is recommended that the same data types are used.

In the following illustration, the value in tag memory location
FLL_Source is copied into 6 tag memory locations of the array
FLL_Dest, starting at tag memory location FLL_Dest [0].

Note: The starting array location does not have to be zero (0).

Figure 10-A. The FLL Instruction.

Data Manipulation Instructions 14

The FAL Instruction
The FAL (File Arithmetic/Logic) is an output instruction that can
perform a copy, do arithmetic with tag data values, and perform
function operations on data stored in tag arrays. All defined by the
expression in the FAL instruction.

The FAL instruction is shown in the following illustration.

Figure 11-A. The FAL Instruction.

The following is a basic explanation of the parameters in a FAL:

Control This is the tag memory location for this particular
FAL. The tag FAL_Control should not be used for
any other instruction. The Control tag identifies other
elements of the instruction.
Example:
FAL_Control.LEN is the number of tag array memory
locations that will be modified. FAL_Control.POS is
the position of the tag memory location pointer in the
tag array.

Length This is the number of elements in the tag array that
will be manipulated.

Position This is the current data element position in the tag
array. Typically the initial value of this is 0.

Data Manipulation Instructions 15

Mode This is the number of positions or elements that are
acted on per scan. If you are moving a large file, you
can distribute this move over multiple scans, thus not
slowing down the program scan time too much.

The 3 mode options are:

All – All tag array memory locations are moved in one
scan.

Numeric Value – You can set the number of tag array
elements to be moved per scan (ie. 50 tags per scan).

Incremental – One tag array element is moved every
time the FAL instruction is toggled true. (Leading edge
of a pulse)

Destination The tag array or tag location that stores the result of
the FAL.

Expression This is the expression of the FAL that stores the tag
locations, operators and constants needed for the FAL.

FAL_Exp [0] – would specify just a tag array element
for an array to array or array to tag transfer.

FAL_Exp + 100 – would add a value of 100 to each
element of the array.

Data Manipulation Instructions 16

The Basic Status Bits for the FAL is listed below:

The Control tag for the FAL instruction will be the prefix for the
tags.

.EN Enable
Bit

This bit is True when the FAL is powered - True
(FAL_Control.EN)

.DN Done Bit This bit is True when the FAL has completed its
operation - (FAL_Control.DN).

.ER Error Bit This bit is True when the FAL operation creates
an error (FAL_Control.ER) and the instruction
stops executing until the program clears the .ER
bit. The .POS value contains the position of the
element that caused the fault.

.LEN Length
(DINT)

This specifies the number of elements within the
array that the FAL instruction operates.

.PO
S

Position
(DINT)

This contains the position of the current element
that the instruction is accessing.

Data Manipulation Instructions 17

Review Questions

1. T F A MOV will allow you to move multiple tag
memory locations at one time.

2. The instruction used to copy multiple tag memory
locations (Array) at one time:

 a) COP

 b) MOV

 c) BTD

 d) FAL

3. To move only the lower 8 bits of a word from the Source
to the Destination in a MVM, the mask data in Hex Style
must be?

 a) FFFF

 b) 0FF0

 c) FF00

 d) 00FF

Data Manipulation Instructions 18

4. The mode parameter for the FAL instruction that will
move one tag memory location of the array every time the
FAL instruction is toggled true is:

 a) All

 b) Numeric

 c) Incremental

 d) Toggle

5. Which of the following file instructions has status bits
available?

 a) FAL

 b) COP

 c) FLL

 d) MVM

6. The mnemonic for the instruction that when true will
copy the data from one tag into a 10 tag array is:

 a) FLL

 b) MVM

 c) FVM

 d) COP

Data Manipulation Instructions 19

7. T F The MOV instruction when true will copy the
data from the Source to the Destination and
delete the Source value.

8. T F The Destination value in a MOV instruction
cannot be a constant value, only a valid tag
location

9. The tag that identities the FAL instruction’s Length and
 Position tags is:

 a) Mode

 b) Expression

 c) DEST

 d) Control

10. T F The COP instruction must start with element 0 in
 an array

Data Manipulation Instructions 20

Review Question Answers

1. F

2. a

3. d

4. c

5. a

6. a

7. F

8. T

9. d

10. T

DOL DISCLAIMER:

This product was funded by a grant awarded by the U.S. Department of Labor’s
Employment and Training Administration. The product was created by the grantee and
does not necessarily reflect the official position of the U.S. Department of Labor. The

Department of Labor makes no guarantees, warranties, or assurances of any kind,
express or implied, with respect to such information, including any information on linked
sites and including, but not limited to, accuracy of the information or its completeness,

timeliness, usefulness, adequacy, continued availability, or ownership.

This work is licensed under a Creative Commons Attribution 4.0 International License.

