NETWORK TECHNOLOGIES 1

- Computer Network
- Network Models
- Client Server
- Peer to Peer
- Network Topology
- Mesh
- Ring
- Star
- Hybrid
- Network Interface Card
- Twisted Pair Cables
- Connectors
- Wiring Standards
- PVC Cable
- Plenum Cable
- Coaxial Cable
- RG-58/59
- RG-8
- RG-6
- BNC Connector
- F Connector
- Fiber Optic Cables
- Connector ST
- Connector SC
- Connector LC
- Network Devices
- Hub
- Switch
- Router
- Bridge
- Access Point
- Modem
- Network Attached Storage
- TCP/IP
- Application Layer
- Transport Layer
- Internet Layer
- Link Layer
- Decimal to Binary Conversion
- Convert 7 to Binary
- Convert 35 to Binary
- Convert 148 to Binary
- IPv4
- Subnet Mask
- Classful Based Sub Masks
- IP Address Classes
- Classless Inter-Domain Routing
- IP Address Schemes
- Network Address Translation (NAT)
- Demilitarized Zone (DMZ)
- Automatic Private IP Addressing (APIPA)
- Static vs. Dynamic IP Address
- TCP/IP Network Ports
- TCP Ports
- User Datagram Protocol Ports
- Common Ports
- Dynamic Host Control Protocol (DHCP)
- Domain Name System (DNS)
- Lightweight Directory Access Protocol (LDAP)
- Simple Network Management Protocol (SNMP)
- Server Message Block (SMB)
- Secure Shell (SSH)
- Secure File Transfer Protocol (SFTP)
- IPv6
- Address Format
- Gateway
- Default Gateway
- Connected computers that exchange and share computing resources such as data, files, storage devices, compute nodes, servers, databases, network connections, input, output, and media devices.
- Connection media includes
- Wired
- Wireless
- Devices (nodes) require a network interface device (NIC)
- Servers - provide network services and control
- of the network resources
- Client - use the network services provided
- by the server
- Allows computing resources: processing power, management, administrative, storage, and network capability can be concentrated where needed
- Very popular, many uses: Internet World Wide Web, Email, Windows network domain

- Computing resources are shared and decentralized
- Each peer has equal access to resources
- Authentication is done by each peer
- Easy and inexpensive to implement
- May have scaling issues (Windows workgroup < 10)
- Examples: Windows workgroup/homegroup, BitTorrent, BitCoin, wireless mesh networks

- Each node is directly connected to every other node
- Little congestion
- Data travels very fast
- Very reliable
- Difficult to implement as the number of connections increase exponentially
- Generally for small networks

- Each node is connected to the nearest nodes
- Forms a ring
- Data travels in 1 direction
- All nodes either accept data or pass it along
- No centralized control

- Each node is connected to the same data path
- Every node receives all data at the same time
- Data flows in a single continuous stream
- Example PCI

- Involves a central connectivity device (i.e. hub, switch, router)
- All nodes make 1 connection to the central device
- The device can forward data from one node to another

- Ports: single, multiple
- Antennas
- MAC Address: Media Access Control Address
- -Six bytes long, hexadecimal
- -00:1A:99:BD:18:D3
- -First 3 bytes are vendor specific
- -Remaining bytes are unique to the NIC
- Status lights: Link active, transmit, receive, speed, color/flickering - activity, problems, collisions

- Twisting minimizes interference
- UTP - unshielded twisted pair
- -No shielding
- -Less expensive
- -Most common
- STP - shielded twisted pair
- -Shielding (usually foil) present
- -Useful around electric equipment and cabling
- -More expensive

(c) (i)()

Categor y	Network	Bandwidth Signaling	Applicati on	Max Speed	Notes
CAT 3	Phone Computer	16 Mhz	$10 \mathrm{BASE-T}$	10 Mbps	Mainly phone
CAT 5	Computer UTP	100 Mhz	$100 \mathrm{BASE-T}$	100 Mbps	Most common
CAT 5e	Computer UTP	100 Mhz	100BASE-T $1000 \mathrm{BASE-T}$	1 Gbps	Most common
CAT 6	Computer UTP	250 Mhz	100BASE-T 1000BASE-T 1GBASE-T 10 GBASE-T	10 Gbps	
CAT 6a	Computer UTP	500 Mhz	1000BASE-T 1GBASE-T 10GBASE-T	$10+$ Gbps	
CAT F/7	Computer STP Phone CATV	600 Mhz	1000BASE-T 1 GBASE-T $10 G B A S E-T ~$	$10+$ Gbps	Individual wire shielding

- RJ-11 - 6 position, 2 conductor (6P2C)
- -Looks similar to RJ-45
- -Suitable for phone systems
- -RJ 14 -6P4C
- -NOT SUITABLE FOR COMPUTER NETWORK
- RJ-45 - 8 position, 8 conductor (8P8C)
- -Most common connector for twisted pair
- network cable

- TIA - Telecommunications Industry Association
- EIA - Electronic Industries Alliance
- T568A -
- -Older legacy
- -Network, voice, video

- T568B - standards for
- -100 ohm twisted pair
- -STP - shielded twisted pair
- -Optical fiber
- T586C - newest designed for commercial building
- Polyvinyl chloride
- -Inexpensive
- -Physically flexible
- -Rubber like plastic polyurethane
- jacket
- -Emits noxious fumes when burned
- -Used outside of walls and ceilings

- Out jacket does not produce noxious gases when burned
- Stiffer and more expensive than PVC
- Has center plenum piece to help separate some wires
- Designed for the "plenum" space - air handling space or ceiling
- Many times required by building and fire codes

- Central conductor surrounded by:
- -Dielectric insulator
- -Braided or foil shielding
- -Plastic jacket
- Significantly reduces EMI

- "Thinnet" (10BASE2)
- Max length: 185 meters
- Other uses
- -Short range audio/video
- -Radio antenna connection

- "Thicknet" (10BASE5)
- Max length: 500 meters
- Other uses
- -Audio / Video for CRT, VCR, CATV, SatTV
-

Radio antenna connection

- Broadband Internet
- Other uses
- -Audio / Video for CRT, VCR,
- CATV,SatTV
- -Radio antenna connection

- Bayonet Neill-Concelman
- Twist lock, quick connectors for
- coaxial cables
- Uses
- -Thinnet 10BASE2
- Antennas

- A/V cables

- Screw type with bolt surface
- for tightening
- Primary use if for A/V equipment
- Connector for cable broadband
- data

- Core
- -1 or more glass or plastic strands
- -5 - 100 microns thick
- Cladding
- -Reflects light back to core
- Coating (Kevlar)
- -Protection and pull strength
- Outer Jacket
- -Protection

- Carries light pulses from a laser or LED pass through individual strands

- Expensive
- Fragile
- Difficult to install
- Very fast
- Reliable over long distances
- Impervious to electromagnetic interference
- Difficult to monitor or tap

- Single Mode
- -Single strand with single string of light
- -Long range: 100 km
- Step Index Multi-mode Fiber
- -Multiple cores
- -Step down refractive index once light enters core
- -Range: 2 km
- Graded Index Multi-mode Fiber
- -Multiple cores
- -Variations in core glass to compensate for distance
- -Up to 2 Ghz of bandwidth = faster than step index
- -Range: 2 km
- Straight Tip (ST)
- -Connects multimode fiber
- -Resembles BNC connector
- -Straight ceramic center pin with bayonet lug
- -Used in network patch panels
- -Most popular type

- Standard/Subscriber/Square Connector (SC)
- -Box shaped
- -Snaps when connected
- -Used with single mode fiber
- -Commonly used to combine 2 single
- mode fiber cables

- Local/Lucent/Little Connector (LC)
- -Small
- -Half the size of SC or ST
- -Single and multi mode fiber
- -Uses RJ-45 latch
- -Transition UTP to fiber

- Connects multiple twisted pair devices together
- Receives data, then rebroadcast to all connections
- Can increase signal strength
- Unsophisticated device
- - Many packet collisions
- - All connected devices receive all data packets
- Largely replaced by switches and routers

- Connects multiple computers together in the same LAN or LAN segment
- Only forwards packets to the destination MAC address
- Smarter than hubs, operate on TCP/IP Link Layer, OSI Data and Network Layer 2 and 3

- Connects multiple networks
- Uses routing tables to direct packets to proper network/destination
- Is the "traffic cop" of the Internet
- Operates on the TCP/IP Link and Internet Layer and OSI Layer Data and Network (Layer 2 and 3)

- A device that connects 1 or more network segments
- Only forwards packets that are outside of its segment, therefore reducing data
- Uses MAC address to accomplish, works on TCP/IP Link Layer and OSI Data

- Provides network connectivity to devices usually using Wifi technology
- May provide additional features such as encryption and authentication
- Functions as a network bridge for connected clients

- A device the converts between analog and digital signals
- Includes:
- - POTS phone modem
- DSL modem
- - Cable modem
- Radio modem

©(1)(0)
- Data storage device with network connectivity
- Does not require active connection or control from a computer

Network Attached Storage

Clients

PRINCE GEORGES COMMUNITY COLLEGE

- Process to process communication
- Higher level protocols used by most applications for network communication
- Examples: DHCP, DHCPv6, DNS, FTP, HTTP, IMAP, IRC, LDAP, MGCP, NNTP, BGP, NTP, POP, RPC, RTP, RTSP, RIP, SIP, SMTP, SNMP, SOCKS, SSH, Telnet, XMPP
- Establishes a basic data channel and host to host communication, end to end messaging, error control, segmentation, flow control, congestion control, and ports
- Details of data transmission are separate from data
- Examples: TCP, UDP, TLS/SSL
- Sends packets across multiple networks or routing
- Host addressing, packet routing
- The IP in TCP/IP
- Examples: IPv4, IPv6, OSPF, ICMP, ICMPv6, IGMP, IPsec
- Host to host on the same network
- Hardware level connection between hosts
- Includes physical media, hardware, drivers, and software
- Lowest layer and independent of higher layers
- Examples: ARP, NDP, Tunnels, PPP, Media access control (MAC), Ethernet, DSL, ISDN, FDDI

Network Topology

- Decimal system = 0,1,2,3,4,5,6,7,8,9
- Binary = 0 (off) or 1 (on)
- To convert a decimal system number to a binary:
- List the powers of 2 from right to left
- Find the greatest 2 power that will fully fit the number you are converting to binary
- and write a 1 above it
- Subtract the conversion number from the fully fit 2 power
- Find the next greatest 2 power that will fully fit the subtracted answer and write 1
- If you cannot fully fit the 2 power then write 0
- Continue until you get to the 20 power (1)

102 4	512	256	128	64	32	16	8	4	2	1
2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

- Start with filling 4 (write 1 above 4)
- Subtract 7-4=3

								1		
102 4	512	256	128	64	32	16	8	4	2	1
2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

- Fill up 2 (write 1 above 2)
- Subtract $3-2=1$

								1	1	1
102 4	512	256	128	64	32	16	8	4	2	1
2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

Answer: 111

- Start with filling 32 (write 1 above 32)
- Subtract 35-32= 3

					1					
102 4	512	256	128	64	32	16	8	4	2	1
2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

- Fill up 2 (write 0 above 16, 8, 4, write 1 above 2)
- Subtract $3-2=1$

					1	0	0	0	1	1
102 4	512	256	128	64	32	16	8	4	2	1
2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

Answer: 100011

- Start with filling 128 (write 1 above 128)
- Subtract $148-128=20$

			1							
102 4	512	256	128	64	32	16	8	4	2	1
2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

- Fill up 16 (write 0 above 64, 32, write 1 above 16)
- Subtract $20-16=4$

			1	0	0	1	0	1	0	0
102 4	512	256	128	64	32	16	8	4	2	1
2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

Answer: 10010100

- 8 bits for each number (0-255), 4 numbers and 32 bits total.
- Dotted Decimal Notation: 192.168.1.1
- Binary: 11000000.10101000.00000001. 00000001
- Network segment: first 2 groups of numbers (192.168 or 11000000.10101000)
- Node segment: last 2 groups of numbers (.1.1 or . 00000001 . 00000001)
- Allows TCP/IP to be routable
- Devices know whether a packet is on their network or not. If it is not on the network, then the packet must be routed to another network
- Uses a binary operation to remove the node segment from the IP address, leaving the network segment
- Apply a subnet mask
- Convert IP address and subnet mask to binary
- Binary AND the binary IP and binary subnet mask
- 0 and any number = 0
- 1 and 1 = 1
- The result is a network ID
- Very specific subnetting
- Not used since 1993
- Still referenced in conversation

Class	Address
Class A	255.0 .0 .0
	11111111.00000000 .00000000 .0000000 0
Class B	255.255 .0 .0
	11111111.1111111 .00000000 .0000000
Class C	255.255 .255 .0
	11111111.11111111 .11111111 .00000000

Class	Leading Bit	Size of Network Number bit field	Size of Node bit field	Number of Networks	Addresses per Network	Start Address	End Address	Default Subnet Mask
A	0	8	24	$128(27)$	$16,777,216$ (224)	0.0 .0 .0	127.255 .25 5.254	255.0 .0 .0
B	10	16	16	16,384 (214)	65,536 (216)	128.0 .0 .0	191.255 .25 5.254	255.255 .0 .0
C	110	24	8	$2,097,152$ (221)	$256(28)$	192.0 .0 .0	223.225 .25 5.254	255.255 .25 5.0
D multicast	1110	undefined	undefined	undefined	undefined	224.0 .0 .0	239.255 .25 5.255	undefined
E reserved	1111	undefined	undefined	undefined	undefined	240.0 .0 .0	255.255 .25 5.255	undefined

- CIDR, Created 1993
- No strict dividing line between IP addresses and subnet mask addresses
- Incorporated because of the limitations of the Class A-F system
- Allows the network designer to decide the IP address range and subnet mask for each network
- Notation 192.168.1.1/24
- - /24 = number of bits of subnet
11111111.1111111.1111111.000000
- - /24 = 255.255.255.0 (254 addresses per subnet)
- Example: 10.1.0.1/16
- - Subnet mask = 255.255.0.0 (65,534 addresses per subnet)
- Example: 10.1.0.1/26
- - Subnet mask = 255.255.255.192 (62 addresses per subnet)
- Private Network

IP Address Range	Number of Addresses	Largest CIDR Block (subnet mask)	Classful Description
$10.0 .0 .0-$ 10.255 .255 .255	$16,777,216$	$10.0 .0 .0 / 8(255.0 .0 .0)$	single class A network
$172.16 .0 .0-$ 172.31 .255 .255	$1,048,576$	$172.16 .0 .0 / 12$ $(255.240 .0 .0)$	16 contiguous class B networks
192.168.0.0 - 192.168.255.255	65,536	$192.168 .0 .0 / 16$ $(255.255 .0 .0)$	256 contiguous class C networks

- Public Network- IP address used on the Internet assigned by an Internet Service Provider
- Allows private network IP address to us a public IP address (usually assigned to a router) to communicate with the Internet
- NAT conceals the IP addresses of the private network
- Internet computers do not know how many computers are behind an IP address that is used for NAT (there are other methods)
- NAT enables more than 4.3 billion computers to connect to the Internet with IPv4
- NAT uses network ports to keep private IP addresses private
- Nodes placed in the DMZ are exposed to WAN traffic without protection from network firewalls and routers
- Nodes in DMZ are vulnerable to security attacks
- Web, mail, FTP, VoIP servers are sometimes placed in a DMZ to improve connectivity and reduce connections problems from a firewall
- Databases and confidential information should never be placed in a DMZ
- Feature of MS Windows that automatically configures an IPv4 address when a computer is not connected to a DHCP server
- Uses 169.254.0.0/16 address range
- Also known as auto-IP or link local address
- Linux - AVAHI
- Mac OS X - APIPA, Bonjure
- Static - IP address is assigned by an administrator or user using the computer OS settings
- Dynamic - uses DHCP and DNS where IP addresses and FQDN (fully qualified domain name or web address) are controlled automatically
- Port range: 0-65535
- Well Known Ports: 0 - 1023 (registered with IANA
- - Assigned to common or well known services (i.e. HTTP (80), FTP, IMAP (143), DNS (53))
- Registered Ports: 1024 - 49,151
- Generally registered by software companies (i.e. VNC (5900), RDP (3389), MS SQL (1433), Oracle database (1521/2483)
- Dynamic Ports: 49,152 - 65,535
- Short lived temporary usage for the duration of the communication session
- Also known as ephemeral ports
- All TCP/IP computers communicate using an IP address and port (i.e.: 192.168.6.076:80 (:80 is port 80), 10.1.3.10:143 (:143 is port 1)
- Connection oriented, guaranteed delivery port
- Breaks up packets, reassembles packets upon delivery, resend/resequence missing packets
- Creation and teardown of connection
- Occurs in the TCP/IP Transport layer
- Keeps track of every byte for out of order and missing data packets
- Recognizes duplicates
- For services that need to ensure data transmission (FTP, SMTP, HTTP, POP3, HTTPS)
- Slower than UDP because of all the transmission control overhead
- Connectionless, transport layer protocol
- "Best effort", sends data packets out and simply hopes it gets to its destination
- Lacks reliability, flow control, error recovery, retransmission, reordering
- No formal connection start and stop
- UDP is unreliable
- Services that need a fast connection where it can tolerate the loss of data packets (Voice over IP, video, video and sound portion of remote desktop, Bit-torrent transfer ports)

Port	Type	Service Name	Description
$20 / 21$	TCP/UDP	FTP	$20-$ File Transfer Protocol Data $21-$ File Transfer Protocol Control
23	TCP/UDP	Telnet	Unencrypted text/terminal
25	TCP	SMTP	Simple Mail Transfer Protocol - sending mail
53	TCP/UDP	DNS	Domain Name System
80	TCP	HTTP	Hyper Text Transfer Protocol - web pages unsecured
110	TCP	TCP	Post Office Protocol v3 - receiving mail
443	TCP	TCP	Internet Message Access Protocol - email management
3389	TCP/UDP	RDP	Ryper Text Transfer Protocol - web pages over TLS/SSL

- A network service (usually performed by a network router) that automatically assigns IP addresses and subnet masks to computers that connect to a network
- The DHCP server is assigned a scope of IP addresses and subnet mask to use when assigning addresses
- Includes and automatically configures information such as default gateway address and domain name server addresses
- The specific IP address is assigned for a finite period of time "leased time"
- Assigns human readable "named" address that corresponds to a computer's IP address
- Translates a FQDN (web address) to an IP address.
- - itpedia-solutions.com = 50.17.203.154
- - Google.com = 173.194.43.2
- Can provide DNS services to a local network so that a computer can be referred to "Asus-G74Sx" vs 192.168.3.112
- OS keep a list of DNS entries in a Host File so it does not have to query a DNS every time a FQDN is entered
- Client Side DNS - a DNS service that runs on a local matching providing local DNS services, decreases traffic to a DNS server
- Defines how a client/server can access and maintain distributed directory information services
- Designed for TCP/IP networks
- Uses DNS to point clients to LDAP servers
- Enables "single sign-on" and user data access across clients
- Microsoft's implementation is call ActiveDirectory
- Collects diagnostic and maintenance information from network devices
- Devices that typically support SNMP include routers, switches, servers, workstations, printers, modem racks, and more
- Agent software collects and stores information for a network engineer to use
- Can include automatic scripting
- Provides shared access to files, printers, serial ports
- Protocol used for "Microsoft Windows Networks"
- Can use NetBIOS over TCP/IP
- Linux/Mac - use Samba
- AKA Common Internet File System (CIFS)
- A cryptographic network protocol for secure data communication, remote command-line login, remote command execution, and other secure network services between two networked computers
- SSH1 - older less secure
- SSH2 - more secure and does not use server keys
- Offers tunneling and port forwarding to enable graphical applications, securely mounting a local file system, etc.
- Mostly used on UNIX/Linux/OS X servers
- Much more secure than FTP
- Uses SSH tunnel connection to a FTP server
- Internet Protocol version 6
- Uses 128 bit address space vs 32 bit address space of IPv4
- Although not currently widely deployed, it is being used more and more every day
- All modern OS have support for IPv6
- Created because the max number of IPv4 address was 4.2 billion (including the off limit class D and E ranges)

PRINCE GEORGES COMMUNITY COLLEGE

- Max number of IPv6 addresses:
- $-340,282,366,920,938,463,463,374,607,431,768,211,456$
- -3.4×1032
- -7.9×1028 times as many IPv4 addresses
- Simplified address headers
- Hierarchical addressing
- Time sensitive network traffic
- Multicasting
- Stateless address auto configuration (SLAAC)
- Network layer security (IPsec)
- Simplified routing
- Optional extensibility for QOS, security, mobility
- Not directly compatible with IPv4, routers need to be upgraded, IPv4 networks need to separate from IPv6
- 128 bits, 16 bytes, 8 "groups"
- 2002:00DB:0000:0000:0031:AB12:0000:3211
- Can be shortened by:
- - Removing 1 or more leading 0 in a group
- - Consecutive sections of Os can be replaced by :: (this can be used only once)
- 2002:DB:0:0:31:AB12:0:3211(removing leading 0)
- 2002:DB::31:AB12:0:3211 (replacing 0s with ::)
- A device, system, or software that converts data between incompatible systems or devices
- Translates data between different networks, operating systems, email formats, etc.
- In TCP/IP the default gateway routes data packets to another network, usually from a LAN to a WAN
- Required to communicate outside of a LAN
- Usually integrated with a router device

PRINCE GEORGES COMMUNITY COLLEGE

THANK YOU

