Excel 6 - Raising Tomato's

For this exercise students will analyze data from a tomato production test plot. Students will calculate yield per 100 ft ., arrange data in "date-of-planting" order, dry matter production per day, and prepare a graph that shows yield per 100 ft . planting data.

Instructions:

Good morning! Here is the data for today. The Boss has just left with the data disk. Your job is to complete the analysis. Download these files: Excel 6 - Tomato Outline, Tomato Production Test Plot Data.xlsx

Objectives

- Arrange data
- Use formulas to calculate data

The spreadsheet must include:

- Edit a workbook
- Complete all calculations
- Format data correctly
- Analyze and arrange data in a chart
- Use the average function
- The total project summary in each report
- Include all graphs

1. Open the workbook

1. Open: MS Office 2013 Excel spreadsheet program
2. Download: the Tomato Production Test Plot Data spreadsheet from this assignment to your class folder

Oct 30 new employees.xlsx Desktop

Open Other Workbooks
3. Double click: on file name to open

Or

1. Open: MS Office 2013 Excel spreadsheet program
2. Select: Open Other Workbooks, find the Tomato Production Test Plot Data file and open

2. Save the spreadsheet

Save the spreadsheet the first time by following these steps:

1. Click on the File tab; Click: Save As
2. Select or browse to a folder you created on the desktop
3. In the File name box, type a name for the document: lastname_Excel 6

Video: Save and print an Excel workbook

4. Click: Save

Remember to Save (Ctrl+S) as you complete each step.

3. Arranging Data

To arrange the data in the order of date-of-planting, a column with the dates in one column is needed.

1. Add: a new column to the right of Yr
2. Using the date function =date(), convert the dates from 3 columns to one

The date function uses the cell reference for year, month, and day. (The columns must be in that order).
3. Verify the number format says date
4. Copy the formula for all varieties

Font		\square	Alignment		-	Number	r
: \times			(ES,C5,	5,05)			
B	c	D				\#	1
by Plot number							
							Harvest da
Variety	Kon	Day	${ }_{7}$	Date	$\begin{aligned} & \text { Soil } \\ & \text { Teap } \end{aligned}$		Total lbs harvested
Beefsteak	6	15	2014	6/15/2014	66		675 1be
Early Girl	6	25	2014	6/25/2014	68		7751 db
Beefsteak	6	20	2014	6/20/2014	70		750 lb
Early Girl	7	5	2014	7/5/2014	78		700 lb
Beefsteak	7	4	2014	7/4/2014	70		750 lb
Early Girl	7	2	2014	7/2/2014	77		800 lb
Beefsteak	5	10	2014	5/10/2014	55		$725 \mathrm{1b}$
Early Girl	5	16	2014	5/16/2014	58		700 fb
Tom Terrific	5	13	2014	5/13/2014	67		$655 \mathrm{1b}$
Early Girl	6	15	2014	6/15/2014	66		$685 \mathrm{1b}$
Tom Terrific	7	18	2014	7/18/2014	68		715 lb
Beefsteak	5	13	2014	5/13/2014	67		745 lb
Tom Terrific	6	3	2014	6/3/2014	69		775 1b

4. Sort "Date of Planting"

Sort "Date of Planting" from earliest to latest.

1. Select: cells containing the relevant information
2. Select: Data Tab
3. Select: Sort A-Z to Custom Sort the data
4. Sort: by date
5. Select: "My data has headers" to include the headers when the relevant information is selected
6. Select: $O K$

4. Calculate Yield per 100 ft . Column

Figure out how much produce or a yield per 100 ft .

1. Create a formula to calculate Yield per 100 ft . in the appropriate column
2. Divide lbs. harvested by Feet of row length to get the lbs. per ft., then Multiply by 100
3. Copy the formula for all rows in that column

4. Calculate Growing Season in Days

Using the date of harvest provided, calculate the Growing Season in Days using an absolute cell reference for the Harvest Date, and use a date function for Planting Date.

To make the cell reference for Harvest Date absolute, place a $\$$ before the column and the row number that will remain the same for each formula copied.
(Example: \$A\$1 is the absolute reference for A1.)
To create a Date function:
Type: =DATE, then add the cell reference numbers for the dates, separated with commas.
(Example: =DATE(c7,d7,e7) are the dates for Beefsteak.)

1. Create a formula to calculate Growing Season in Days in the appropriate column using absolute cell reference for the Harvest Date, and use a date function for Planting Date
2. Copy the formula for all rows in that column

Note: Absolute cell reference: A cell reference that refers to cells by their fixed position in a worksheet; an absolute cell reference remains the same when the formula is copied.

5. Calculate Dry Matter per Day

Calculate dry matter production per day produced for planting 100 ft . rows.

1. Create a formula to calculate Dry Matter Production per Day for 100 ft. rows in the appropriate column
a) Calculate the Dry Matter: 100% minus the Moisture level
b) Multiply by: Yield per 100 ft .
c) Divide by: Growing Season in Days
2. Copy the formula for all rows in that column

Feet of roy length	Field per 100	Graying Season in daps	Hoisture level of Tamataes	Dry Hatter Production Par Day far 100 'rays
68	2	3	78\%	$=$
67			75\%	
57			76\%	

Remember to add () around the functions you want to perform together. (100\% - D?) would be the first function you want to perform; then the multiplication; then the division.

6. Calculate the Averages

Complete averages for all relevant information. Black out any columns for which there are no averages.

1. Calculate the AVERAGE for the following:
a. Soil Temps
b. Ibs. harvested
c. Feet of row length
d. Yield per 100 ft .
e. Growing Season in Days

f. Moisture Level of tomato's and
g. Dry Matter Production

8. Subtotals

Create subtotals to make a report of the average production by variety.

1. Add a row to create a subtotal for Total lbs. harvested

							Tarvest date
Plot	Variety	Mon	Day	${ }^{7}$	Date	$\begin{aligned} & \text { Soin } \\ & \text { Texp } \end{aligned}$	Total Ibs harvested
333	Boofoteok	5	10	2014	5/10/2014	55	725 lbs
335	Tom Torrific	5	13	2014	(5/13/2014	67	$655 \mathrm{lb-}$
338	Boofoteok	5	13	2014	(5/13/2014	67	745 lbs
341	Eorly Girl	5	16	2014	5/16/2014	58	700 lbs
339	Tom Torrific	6	3	2014	6/3/2014	69	775 lbs
325	Boefoteok	6	15	2014	6/15/2014	66	675 pb
336	Eorly Girl	6	15	2014	6/15/2014	66	685 lbs
327	Boefoteok	6	20	2014	6/20/2014	70	750 lbs
328	Eorly Girl	6	25	2014	6/25/2014	68	775 lbo
332	Eorly Girl	7	2	2014	7/2/2014	77	800 lbo
331	Boefoteok	7	4	2014	7/4/2014	70	750 lbs
340	Eorly Girl	7	5	2014	7/5/2014	78	700 lbs
342	Tom Terrific	7	18	2014	7/18/2014	68	715 lbs

9. Prepare a graph of "yields-per-100"

Prepare a graph of "yield per $100 \mathrm{ft}$. " with Variety as the bottom label.

1. Select: Yield per foot column and Variety column
2. Insert: a bar chart with Variety at the bottom

10. Save your work

Click the Save button on the Quick Access Toolbar, or press $\mathrm{Ctrl}+\mathrm{S}$.

11. Upload the completed spreadsheet to Excel 6 - Tomatos

After completion save the file one more time then upload the file to this assignment:

1. Click: on the title
2. Select: Add Submission
3. Drag and drop the file into the box or select the file to upload

Save changes Cancel
4. Select: Save Changes

