Alpena Community College
Bob Tosch Cad/Cam CNC
MFG/IND Engineering
Cad/Cam CNC

• Instructor - Robert Tosch Ext. 7421

• Objectives
 – Careers/training opportunities
 – Safety/PPE
 – Speeds & feeds
 – Precision inspection
 – Projects

• Lunch

• Shop tours

• Guest speakers
Career Outlook CAD/CAM & CNC

• Job growth (2012-2022)
 – Source: Michigan Bureau of Labor Market Information
• CAD/Mechanical Designer = 0%
• CNC Set-Up/Machinist = +26%
• CNC Programmer = +38%
• Inspection/Quality Assurance = +15%
• Machinist = +17%
• Tool Makers = +11%
• Welders = +10%
Skill / Knowledge for this career

- **Skills**
 - Programming
 - Complex Problem Solving
 - Critical Thinking
 - Equipment Monitoring
 - Operation Monitoring

- **Knowledge**
 - Mathematics
 - Mechanical skills
 - Design
 - Engineering and Technology
 - Computers
CAD/CAM & CNC

• CAD is a valuable skill
 – Many careers require CAD skills
 – Most CAD design jobs requires a 4 year degree

• CAD/CAM is a valuable set of skills
 – CAD/CAM = Automation of machines & inspection
 – Most CAD/CAM & CNC jobs requires a 2 year degree

 • CAD – computer aided design
 • CAM – computer aided machining programming
 • CNC – computer numerical control programming
 • CMM – coordinate measurement machine programming
CAD/CAM Careers

• Main careers areas
 – CAD design
 – Conventional machining – tool making
 • Maintenance – millwright
 – CNC machining
 – CAM programming
 – Quality control – inspection
 – Automation
 • Flexible manufacturing
 – MFG engineer
Type of Industries

Over 120 Machining & Fabricating companies in N. Michigan & Eastern U. P.

• Aerospace & Defense
• Automotive
• Energy
• Heavy Equipment
• Medical
• Mining & Drilling
• Clean, healthy work environment
<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td>Machining Processes I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Print Interpretation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Math I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English I*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material Science</td>
<td></td>
</tr>
<tr>
<td>2nd Semester</td>
<td>Machining Processes II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Math II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English II*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3D Modeling</td>
<td></td>
</tr>
<tr>
<td>3rd Semester</td>
<td>Machine Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to CNC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Political Science*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer-Aided Machining (CAM)</td>
<td></td>
</tr>
<tr>
<td>4th Semester</td>
<td>Tool Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced CNC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied Physics*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAD Elective</td>
<td></td>
</tr>
</tbody>
</table>

* = Required for AAS Degree
Multiple career paths

- Up & Out
 - Supervision
 - Design
 - Programming
 - Inspection

- Transfer to Engineering

- Automation

- Robotics

- Program
Careers in the CAD/CAM Industry
CAD Design

• CAD operators/drafter
 – use CAD systems to prepare drawings & prints.
 – They may work for engineers, architects and other professionals in producing plans and drawings

• CAD designers
 – Check dimension of parts, materials to be used, relation of one part to another, and relation of various parts to whole structure or project.
 – Utilize knowledge of various machines, engineering practices, mathematics, building materials, and other physical sciences to complete drawings.
CAD Design

• Tool Design
 – Designs a wide variety of tools including cutting and forming tools.
 – Works with engineering & shop personnel to resolve design problems related to material characteristics, dimensional tolerances, service requirements & manufacturing procedures.
 – Draws preliminary sketches and prepares layout and detail drawings, using CAD design/drafting software.
 – Modifies tool designs according to trial or production service data to improve tool life or performance.
CNC Machinist Operator/Programmer

• Duties vary from shop to shop
• Skills include how to:
 – Visualize a CNC program
 – Load program into machine
 – Write short manual G&M programs
 – Understand machining processes and the sequence of operations
 – Select cutting tools, adjust wear offsets
 – Make machine & tooling setups
 – Calculate speeds and feeds
CNC Machine Programmer

• Duties vary from shop to shop

• Skills include how to:
 – All the skills of a CNC machinist
 – CAD & CAM computer skills
 – Be skilled in print reading
 – Have a good knowledge of computer programming languages and procedures
 – Be able to visualize machining processes and operations
Quality Control Inspector

• Checks and examines machined parts to determine whether they meet specifications
• Have technical or vocational education
• Skills necessary
 – Understand and read mechanical drawings
 – Make basic mathematical calculations
 – Use micrometers, gages, comparators, and precision measuring instruments
Job Classifications

• Technician
 – Works at level between professional engineer and machinist
 – May assist engineer with cost estimates & technical reports

• Technologist (testing)
 – Works at level between graduate engineer and technician
 – 3-4 year graduates from technical college
 • Design studies, production planning & lab experiments
 – Does the work of an engineer without the pay
Job Classifications - Continued

• Tool and Die maker – Highly skilled craftsperson
 – Able to make different types of dies, molds, cutting tools, jigs, and fixtures
 – Serve an apprenticeship, have above-average mechanical ability, operate all standard machines

• Engineering technologist (non Degreed)
 – Do many jobs normally performed by an engineer
 – Often employed in middle management

• Supervisor
 – Hire, train & assist new employees
 – Run the shop including most equipment
 – Deal with budgets & discipline issues
MFG Engineer

• New Product launches
• Process improvement on existing products
• Problem solver
• Referee

• What makes a good MFG engineer
 – Hands on skills
 – Doesn’t want to be tied to a desk
 – Getting a C in Calculus
PPE

• Safety Glasses – always
 – Even in the Layout & Inspection rooms
• Clothes and Hair
• Safe Conduct in the Shop
Speeds & Feeds

• Proper RPM & Feed rate, determine the tool life of the cutter

• RPM has the greatest affect on Tool wear

• Materials that have similar microstructure/grain structure will have similar machining characteristics

• These material are grouped together on the basis of their microstructure (hardness)
HSS RPM Calculations

- CS = Cutting Speed
- D = Diameter of rotating part or cutter
- RPM = \(\frac{CS \times 4}{D} \) (Practical formula)

- **Form cutters** - Threading, Necking, Reaming, Counter boring, & Counter sinking use 1/3 the RPM

- Typical Feed rates/range for lathe
 - Roughing cuts: .010 to .015 feed per rev
 - Finishing cuts: .003 to .005 feed per rev
CS = Cutting Speed

- Based on material

<table>
<thead>
<tr>
<th>Material</th>
<th>Rough Cut</th>
<th>Finish Cut</th>
<th>Threading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ft/min</td>
<td>m/min</td>
<td>ft/min</td>
</tr>
<tr>
<td>Machine steel</td>
<td>90</td>
<td>27</td>
<td>100</td>
</tr>
<tr>
<td>Tool steel</td>
<td>70</td>
<td>21</td>
<td>90</td>
</tr>
<tr>
<td>Cast iron</td>
<td>60</td>
<td>18</td>
<td>80</td>
</tr>
<tr>
<td>Bronze</td>
<td>90</td>
<td>27</td>
<td>100</td>
</tr>
<tr>
<td>Aluminum</td>
<td>200</td>
<td>61</td>
<td>300</td>
</tr>
</tbody>
</table>
RPM chart

- Clausing Drill press

<table>
<thead>
<tr>
<th>DRILL DIA.</th>
<th>STEEL</th>
<th>ALUMINUM</th>
<th>STAIN. STEEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16</td>
<td>3000</td>
<td>FULL SPEED</td>
<td>1520</td>
</tr>
<tr>
<td>1/8</td>
<td>1520</td>
<td>FULL SPEED</td>
<td>760</td>
</tr>
<tr>
<td>3/16</td>
<td>1020</td>
<td>4800</td>
<td>510</td>
</tr>
<tr>
<td>1/4</td>
<td>760</td>
<td>3000</td>
<td>380</td>
</tr>
<tr>
<td>5/16</td>
<td>610</td>
<td>2400</td>
<td>300</td>
</tr>
<tr>
<td>3/8</td>
<td>510</td>
<td>2030</td>
<td>—</td>
</tr>
<tr>
<td>7/16</td>
<td>440</td>
<td>1740</td>
<td>—</td>
</tr>
<tr>
<td>1/2</td>
<td>380</td>
<td>1520</td>
<td>—</td>
</tr>
<tr>
<td>9/16</td>
<td>340</td>
<td>1350</td>
<td>—</td>
</tr>
<tr>
<td>5/8</td>
<td>300</td>
<td>1220</td>
<td>—</td>
</tr>
</tbody>
</table>

Model No. 1150

Serial No. 3-3463-1
Phone Apps

- There is a APP for that
 - Cutting tool companies have free APP’s for RPM calculations using their carbide inserts
Calipers can be used to make outside, inside, and depth measurements.
Explanation of Caliper

- The bar is divided into .100 increments.
- The caliper dial is divided into 100 divisions.
- The reading is made by combining the division on the bar and the dial reading.
Caliper: Continued

- The dial hand makes one full revolution for each .100 movement.
- Each dial graduation, = .001 therefore represents .001 X 100 = .100
- Always place the calipers in their protective box after each use
Caliper Image

One revolution
0 to 0 = .100

.001

.010
Caliper Practice
Caliper Practice #4
Caliper Safety

Is this safe to the caliper?
HAAS Control Series

Panel Layout

Power ON

Reset & Power Up
Hass TL-1 CNC Lathe

- Manual/CNC lathe
- Power up, make sure Tail Stock is at the far right
- Hold Pendant
Manual Mode

- Move table by hand
- Read the screen
MDI (Manual Data Input)

- Answer questions
- Generate code
- Run machine
Projects

- Split in 2 groups, then switch
 - CNC lathe part
 - Cut, Mill & Drill clock
 - CNC mill/engrave face
 - Assemble clock
Clock

• Cut & prep material for CNC mill
“CAD/CAM CNC Powerpoint” by Bob Tosch, Building Career Pathways in the STEM Cluster: Closing the Skill Gaps in Northeast Michigan, Alpena Community College is licensed under CC BY 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

ACC is sponsored by a $2.5 million grant from the U.S. Department of Labor, Employment & Training Administration TAACCCT Grant #TC-26458-14-60-A-26. It is the policy of Alpena Community College (ACC) to comply with Section 504 of the Rehabilitation Act of 1973, as amended, and with the Americans with Disabilities Act of 1990 (ADA). These acts provide for equal opportunity for students with disabilities in educational activities, programs, and facilities. ACC is committed to affording equal opportunity to persons with disabilities by providing access to its programs, activities, and services.

This workforce product was funded by a grant awarded by the U.S. Department of Labor’s Employment and Training Administration. The product was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The U.S. Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership.