Introduction

- The use of lags can reduce the number of activities
 - So far, the logic diagrams have one activity following another
 - It may be possible to overlap some activities
 - Successor starts, but the predecessor is not completely finished

- Lags are used to facilitate the overlaps
 - May also allow for time between activities
Types of Lags

- There are four types of lags
 - Finish-to-start (FS)
 - Start-to-start (SS)
 - Finish-to-finish (FF)
 - Start-to-finish (SF)

- The relationship between activities used so far has been finish-to-start
 - This is the default relationship
 - The predecessor must be finished before the successor starts
Finish to Start Relationship

- Activity A must finish before activity B can start
 - Assuming no lag (no number on the arrow)
 - A number on the arrow indicates the amount of lag
 - Activity B can start X days after activity A has finished
 - Commonly used for concrete curing operations or other curing or drying activities
 - Orders placed, the lag indicates the days before delivery

- Using a lag activities can be eliminated
 - Concrete example
 - Pour concrete → Cure concrete → Load concrete
 - Becomes Pour concrete → 5 → Load concrete

- Negative lag
 - Indicates the activity starts X number of days before the finish of the predecessor
Start-to-Start Relationships

- Activity A starts, and activity B starts X number of days after the start of A
 - X indicates the number of days of lag
 - More common on medium to large projects
- Example
 - Steel studs started, rough electrical can start soon after
 - All the steel studs do not need to be completed
 - Various other examples
- No negative lags for a start-to-start relationship
Finish-to-Finish Relationships

- Activity A finishes and then X days later activity B finishes
 - X indicates the lag
 - Common to large projects

Example
- Place the drywall
- X days later the mudding and taping is completed
Which Lag Should Be Used?

- Is an SS or an FF relationship more appropriate?
- Generally, the predecessor must be complete before the successor can be complete
 - This would make an FF relationship seem more logical
 - But the later activity can not start until after the earlier activity has started

- Rule-of-thumb:
 - If the successor has a longer duration than the predecessor, use an SS lag
 - If the successor has a shorter duration than the predecessor, use an FF lag

- Another option is to use both
 - Usually an easy option with scheduling software
Start-to-Finish Relationships

- Activity A starts and X days later activity B finishes
 - X indicates the days of lag
 - Not a common relationship
- The manager must decide when and where to use lags
- Keep in mind that the idea of the schedule is to keep the communication about project goals simple and effective
 - Do not let lags interfere with effective communication
Lags and Flexibility

- With lags in the schedule the field personnel can decide which areas are best to start
 - Field managers can adjust the work without affecting the schedule
- This may be a disadvantage as well
 - There may be reasons to start on a particular portion of work that are not obvious from looking at the schedule
 - Possible use a more detailed schedule to convey this information
- A bar chart can be used for field personnel
 - Eliminate confusion
Start and Finish Date Calculations with Lags

- **Forward pass**
 - Add the duration to the ES date to get the EF date
 - Then consider the relationships between the successor and predecessor activities
 - For an FF, add the lag to the predecessor’s EF, then subtract the duration to get the ES
 - Will show an obvious SS relationship
 - See page 114 figure 10.11 and 10.12
 - Follow the arrows, add and subtract accordingly

- **Backward pass**
 - Same operation, reverse order
 - Subtract the amount of lag and follow in reverse order
Bar Charts with Lags

- The bar chart will show the lags by the overlap of activities.
- With more than one relationship the bar chart dates can become quite confusing.
 - Often the computer is used to calculate the dates automatically.
Review

- Lags can significantly reduce the number of activities on a schedule
- The overlap helps to reduce the duration of the project
- Lags allow for flexibility in the field
 - Reduces the amount of time spent updating the schedule
- Lags may not show the necessary detail needed to eliminate communication problems