Lesson 4: Objective-C

INTRODUCTION

This lesson provides an overview of Objective-C. It is assumed that the reader is already familiar with at
least one programming language such as C or C++. This overview focuses on some of the differences and
terminologies specific to Objective-C. Objective-C is a cross-platform language that can be used with
Mac, Linux/UNIX, or Windows. Most often, it is used with Mac.

LESSON OBJECTIVES
By the end of this lesson, the student will be able to:

Discriminate among a superclass, a class and a subclass.

N

Identify in a message, the instance variable, the method and whether there are arguments
included.

Explain why comments are important in a program.

Identify the two Boolean values used in Objective-C.

Identify the differences between a class method and an instance method.

Explain what a pointer is and the benefit of using pointers in iOS applications.

Identify primitive data types.

Differentiate content and code that goes in the header (.h) file, the implementation (.m) file and
the xib (.xib) (or storyboard) file.

9. Identify the use of id as a data type.

10. Identify the purpose of the viewDidLoad method.

©® N Vv kW

LEARNING SEQUENCE

Required Reading Read the following:

e Lesson 4: Objective-C

Resources View the following:

e Xcode #8: Connecting the Storyboard to H Files (4:37)

* View Xcode #9 - .H files, .M files, iBaction, Scope and more...(6:16)

* Xcode #10 — Sprite Animatin using the Animatedimages Class
(8:56)

e Xcode #11 — Scale Animation (6:55)

e Xcode #12 — Random Numbers and Sounds (5:16)

Other resources:

* Objective-C Classes & Objects

MTNS work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where
otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.

Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

e Using Objective-C Preprocessor Directives
¢ Ry’s Objective-C Tutorial > Protocols
e Ry’s Objective-C Tutorial > Blocks

Assignments Complete the following:

1. Practice Exercise - Caption
2. Lesson 4 Quiz

KEY TERMS

As you read your lesson, pay close attention to the key terms and phrases listed throughout the lesson.
These terms and concepts are important to your understanding of the information provided in the
lesson.

Click on the notecards to reveal the definition.

-4 Previous Card 1of; Next Card
of 20

INSTRUCTION

Getting Started with Objective-C

Objective-C is a superset of C, so that means that it is built on top of C. Objective-C adds object-oriented
features to C and because of that, it is possible to compile any program written in C with an Objective-C
compiler and C code can be included within an Objective-C class.

Objective-C is the native language used for Mac, iPhone, and iPad development. A prerequisite for
Objective-C is that Xcode has been downloaded and installed from the Mac App Store onto a Mac
system.

What is Object-Oriented Programming?
Object-Oriented Programming (OOP) is a programming language model made up of objects. An object is
an instance of a class. A class defines an object’s properties and its capabilities. OOP allows the

This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where
otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.

Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

programmer to break up code into objects. It is also self-contained, so details are not visible outside of
the object making encapsulation possible. Read Objective-C Classes & Objects for more information.

Characteristics and Symbols
Objective-C is written differently from other languages especially when dealing with methods and

messages. A method is a function that is part of a class. With Objective-C, objects communicate with
messages; an object does not call a method which is common in other programming languages.

The “@” symbol indicates a compiler directive. Objective-C has its own preprocessor that processes @
directives before the actual compilation. The preprocessor searches for these special directives written
by the developer and converts them to code that can then be handled by the compiler.

The “#” symbol indicates a preprocessor directive. Both @’s and #'s are going to be handled before the
code is compiled.

Boolean is indicated by YES and NO (all capitals) rather than True and False (which is used in C).

Common Compiler Directives
The @interface is used to describe an instance variable for a class in the header file and wherever

methods are declared.

The @property declares variables and automates the setup of a getter/setter in the header file. To
change the @property’s default naming conventions, change the getter/setter method names with the
getter= and setter= attributes.

The @implementation shows the compiler which class is being used followed by the code being
implemented in an implementation file.

The @end is used with @interface or @implementation and indicates the end of the interface or
implementation.

—G)
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

/7

// ViewController.m

// Caption

/7

// Created by Elizabeth Pannell on 7/5/13.

// Copyright (c) 2013 MyCompany. All rights reserved.
/7

#import "ViewController.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad
; [super viewDidLoad];
// Do any additional setup after loading the view, typically from a nib.
- (void)didReceiveMemoryWarning
; [super didReceiveMemoryWarning];

// Dispose of any resources that can be recreated.

}

- (IBAction)capButton:(id)sender {
NSString smessage=_capInput.text;
caplLabel. text=message;

}

@end

Figure 1: Code showing common compiler directives.

Common Preprocessor Directives
Preprocessing is the first step in the compilation stage. For additional information, read Using Objective-
C Preprocessor Directives.

The #import <file.h> tells the program to replace a statement with the file.h contents. It only adds a
header file once. Figure 1 uses the #import with ViewController.h to control and manage the View.

The #define is a preprocessor macro used to define constants and macros.

The #pragma mark is used to create sections in the code. It is very similar to bookmarking and allows the
programmer to go to different sections of code.

Objective-C Classes

There is an interface area and an implementation area which are in separate files (in C and C++, both of
these are in the same file). The header file (.h) is where the class properties and actions are declared.
Figure 2 shows an example header (.h) file.

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController
@®| @property (weak, nonatomic) IBOutlet UIImageView xpicView;
® @property (weak, nonatomic) IBOutlet UILabel xpicLabel;
® - (IBAction)showButton: (id)sender;

P

@end

Figure 2 Header (.h) File Example

The #import pulls from the indicated file before the code compiles. The Ul is a framework, so the
#import statement is indicating the framework for the section. The < and > symbols indicate a reference

—(D
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

to something in the language that does not need to be copied into the project; it is handled
automatically.

@interface indicates where the interface area starts: the name of the class is ViewController and the
name of the superclass is UIViewController. A superclass is the parent class.

The two @property statements declare instance variables. IBOutlet tells Xcode that it will be tied to or
used with something in the interface.

The — (IBAction) is an action or method which will be visible inside the Interface Builder section.
The end of the interface section is indicated by @end.

The implementation file (.m) is where the class properties and actions are implemented. Figure 3 shows
an example of this file.

#import "ViewController.h"
@implementation ViewController

- (void)viewDidLoad
{
[super viewDidLoad];
// Do any additional setup after loading the view, typically from a nib.

}
- (void)didReceiveMemoryWarning

[super didReceiveMemoryWarning];
// Dispose of any resources that can be recreated.

- (IBAction)showButton: (id)sender {
_piclLabel. text=@"puppy";
UIImage xnewImage=[UIImage imageNamed:@"puppy.png"l;
_picView.image = newlmage;

}

@end

Figure 3 Implementation (.m) File Example

In this example, ViewController.h, the header file, is being imported. The quotations indicate that this
file was created and is part of the project and not a library or framework within the language.

The implementation section starts with @implementation ViewController. ViewController is the name
of the class. (void)viewDidLoad detects when the view loads and is used for setup (such as setting up an
array to have it available); (void)didReceiveMemoryWarning allows tasks like saving or freeing up
memory when a memory warning is received.

The (IBAction)showButton was created in the interface. The curly brace is used at the beginning and the
end of the code. In this example, “puppy” is going to show as the label text and a variable, which stores
a variable, is being created to hold the image, puppy.png. _picView loads the image into the image
viewer.

The implementation section is then ended with @end.

This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where
otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.

Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

View Xcode #8: Connecting the Storyboard to H Files (4:37) to create files in Xcode and associate these
files with a ViewController.

EEE D=0

CoinTossDehod ConTossDceRol m mViewControtier.m - ([I) -vewOdloas 0D e

P I | A ConToudiceRon | () Phone Retina 0.5-inch)

For more information on .h, .m and IBAction, view Xcode #9 - .H files, .M files, iBaction, Scope and
more...(6:16).

- \ » = 2l =
» = ~ - 8 |= <« Sieril§ <210 D
, 1 CoinTossDiceRoll

¥ (] ComTossOrceRol

W mAGEDeiegate
m mAppOeiegate m Coin Toss
Result CoinControl «
-) t
(18 sender
.
- Joss (

-

- *

This is how you actually teach people to program.

Ads by Google

Formatting
All statements end with a semi-colon (;). Statements can go over multiple lines and will ignore white
space and indentions.

mmis work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

Comments are indicated by a double slash (//) for a single line. Look at the implementation file in Figure
3 to see an example of a single line comment. Use a slash star (/*) to begin a multiline comment
followed by a star slash (*/) to end it.

The name of a variable or function is case sensitive and may NOT include special characters or spaces. A
variable name can only have letters, numbers, underscores. A variable name cannot start with a
number. For example, George and GeOrGe are different variables. An example of a valid name is
_Puppy, but _Puppy& is invalid because of the special character, and 1Puppy is invalid because it begins
with a number.

Pointers and Variable Creation

A pointer points to a memory location and is used in Objective-C to point to instance variables, or
instances which are variables inside a class that holds values specific to that class. An object will have a
pointer to it. The star (*) is used to indicate a pointer and it must be used when an instance variable is
declared. After the instance variable is declared, it is not necessary to use the * any longer.

An id is a generic data type that is required when there is an instance variable that has a pointer. The
data type for arguments and parameters on a method also needs to be indicated. By assigning an id,
different types of objects can use the same method. An id does not require that the star (*) be used in
front of it.

Messages

Instead of calling a function, Objective-C uses messages. The message must be enclosed in brackets ([]).
There must also be a pointer to the object receiving the message and the name of the method. Figure 4
provides an example.

NSDate *|later=[today datebyAddingTimelnterval:100000];

Figure 4 Message Example

The *later indicates an instance variable. The class is NSDate. today is an instance variable (which was
previously created) receiving the message datebyAddingTimelnterval:100000. The method is
datebyAddingTimelnterval and the colon (:) indicates that there is one argument which is the value
100000.

Nesting messages will execute the message inside the inner bracket first and then proceed outward. The
Apple-approved way of initializing is to nest. For example, the following code is not nested:

NSDate *now=[NSDate alloc];
[now init];

The preferred, nested version is as follows:

NSDate *now=[[NSDate alloc]init];

—G)
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

Protocols
A protocol focuses on creating a set of methods that perform a specific role. Different objects can use
the protocol to fulfill that role.

Use the @protocol to create a list of method declarations. Some of the methods will be required, others
will be optional. If a class adopts the protocol, then all of the required methods must be used. Read the
Protocols section of Ry’s Objective-C Tutorial for an explanation on how protocols can be used to reduce

redundant code.

Collection Class
A collection class holds a group of pointers. Examples of collection classes are NSArray, NSMutableArray,
NSSet, NSMutableSet, NSDictionary, and NSMutableDictionary.

NSArry is the default in which all objects are assigned when created. NSMutableArray can create and
assign objects at different points in the program which allows for much more manipulation.

In the video, Xcode #10 — Sprite Animation using the Animatedimages Class (8:56), an array is used to
create the animation.

> A ComTossDuceRol - ([#hone Revna (3.5-inch " o S 09 O=0
i

" QAASE®B = o« ComTossDreRo CoinTos. 5 Mumst. + 5 Manst W Con W Coin Vew mage View - coin_toss. 905 DE8see O
" Outiet Cottections

Home Coin Toss

oss/ Dice Roll

Callbacks
A callback is executable code that is passed as an argument to other code which will eventually return,
or be called back. There are three different types of callbacks:

* Target-action: if something happens, a message is sent to the target object (this is the simplest
of the three)

* Helper Objects: a delegate or data source is available if something occurs (a protocol is adopted
an is waiting for something to happen)

—G)
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

* Notifications: a notification center object is waiting for an event to occur. When the event
happens, the notification center passes on the message.

Blocks are used to handle a problem with callbacks that are spread apart in the code (in other
languages, this is known as anonymous functions, closures, or lambdas). A block allows the programmer
to treat a chunk of code (like a function, for example) as if it was data. A block is indicated with a carat
symbol (7). Read the section on Blocks at Ry’s Objective-C Tutorial.

View Xcode #11 — Scale Animation (6:55) which demonstrates how to make an object slowly increase in
size and Xcode #12 — Random Numbers and Sounds (5:16) to finish the coin toss app by adding in the
sound effects.

= L LI I0S Simulator - Phone Retina (3.S-inch) / 105 7.0.3 (118508)
o - . Quick ety

. "1 carrier ¥ 11:07 AM - Oectred in miCosnConroter.m
) ~vosodeiuas € Home Coin Toss
ol
— Result

ComTessDiceRon-nfo.plist Toss Coin

Infoist strings

Ads by Google

This is how you actually teach people to program.

mmis work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

Safari

SUMMARY

Objective-C is a superset of C, and is the language used for Mac, iPhone, and iPad development.
Object-oriented programming breaks code into objects and encapsulation keeps details of the
objects invisible outside the object. This lesson discussed the different components within Objective-

C and how those components function.

ASSIGNMENTS
1. Practice Exercise - Caption
2. Lesson Quiz 4

—G)
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

