Lesson 4: Handling Data

INTRODUCTION

There are several considerations that a developer should keep in mind for handling data. First, what
types of data need to be stored? Second, determine where framework classes can be used versus
classes with custom functionality. Thirdly, a developer has to look at how the data will be supplied to the
user interface.

LESSON OBJECTIVES

By the end of this lesson, the student will be able to:

1. Define data persistence.

2. Identify and differentiate among the different methods discussed for handling data persistence
on the iPhone.

3. Identify the subfolders in the iOS applications folder and purpose of each.

4. Explain the purpose of an application’s sandbox and how this purpose impacts the application’s
design and functionality.

5. Differentiate between single-file persistence and multiple-file persistence.

6. Discuss two protocols used in archiving data persistence and identify which of these protocols is
required and which is optional.

7. Discuss the advantages and disadvantages of using SQLlite3.

8. Discuss the advantages and disadvantages of using Core Data.

LEARNING SEQUENCE

Required Reading Read the following:

¢ Lesson 4: Handling Data

Resources View the following:

e jOS App Dev 105: The Foundation Classes — 5. NSArray (5:20)

e jOS App Dev 105: The Foundation Classes — 9. NSCoding (10:44)

e Create a MySQL/SQLite Database on a MAC (to use in iPhone App)
(6:37)

e Xcode Database — How to create, read, update and delete (CRUD)
(9:35)

e Xcode 5 Tutorial: iOS 7 Core Data — Getting Started (16:19)

Assignments Complete the following:

1. Practice Example - Handling Data

This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where
otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.

Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

2. Quiz4

KEY TERMS

As you read your lesson, pay close attention to the key terms and phrases listed throughout the lesson.
These terms and concepts are important to your understanding of the information provided in the
lesson.

Click on the notecards to reveal the definition.

-4 Previous Card 1 of 3 Next Card
of 20

INSTRUCTION

The iOS App Folders
The following folders are part of the iOS app:

* AppName.app contains the app and its related resource (icons, graphics, and property files).
.app is an extension that turns a regular directory into an application bundle.

* Documents stores user app data files. This is data that the app generates.

¢ Library stores files that are not user data files. This directory should not be used for user data
files.

* tmp stores temporary files that do not need to be kept between launches of the app. The app
should remove files from the directory when they are no longer needed. This folder is not
backed up by iTunes, but it is also not deleted unless it is explicitly deleted with code.

An iOS app may create additional directories in Documents, Library, or tmp.

The Sandbox

Each app installs in its own sandbox directory. A sandbox limits an app’s access to files, preferences, and
network resources, for example. The sandbox directory acts as the home for the app and its data.
Therefore, an app cannot access files in directories outside of its home directory. The path to the
Documents directory must be found in order to save data for the app.

MTNS work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

Data Persistence
Data persistence is the ability to save data and have it available at a later date. There are four common
methods used for data persistence:

1. Property lists; also known as plists, this is an XML format introduced by Apple for iOS. A plist is a
nested list of key-value pairs containing common data types such as strings, numbers, arrays, or
dictionaries

2. Object archiving takes data created by a user in an app to store for later retrieval

3. SAQLite uses sqlite queries to store and manage data within an app

4. Core Data provides a visual interface to build the data model. Core data maintains the
consistency of relationships among objects in the app.

Strategies for Saving Files
There are two strategies for saving files.

* Single-file Persistence: there is only one file, so the entire contents are rewritten whenever a
save is done. The problem here is that all of the app data must be loaded into memory and
rewritten even if there is a small change. This could pose a problem if the developer is trying to
manage more than a couple of megabytes of data.

* Multiple-file Persistence: uses different files to store data. Only the data that is needed is
loaded. This makes it easier to flush memory if the low memory warning is received. The biggest
problem with this strategy is that it is more complicated to handle, since it requires more
coding.

Property Lists

One of the simplest ways to store data is to create a property list. This requires a serialized object, an
object that has been converted into a stream of bytes. Only classes that are collection classes can be
stored in a property list in Objective-C and include the following:

¢ NSArray

* NSMutableArray

* NSDictionary

* NSMutableDictionary

¢ NSData

* NSMutableData
* NSString

* NSMutableString
* NSNumber

¢ NSDate

The benefits of property lists are that they are easy to build and edit and they are useful with a small
quantity of data. The downside is that property lists do not work with custom objects and it is not easy
to do calculations.

—G)
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

Watch the video, iOS App Dev 105: The Foundation Classes — 5. NSArray (5:20). This video uses the
collection class, NSArray to create an array with objects.

vl NSArray //
1 target, iOS SDK 6.1 // ViewController.m
NSA
\ A NSArray x iz
Il AppDelegate.h // Created by Matt on 2013-03-02.
m AppDelegate.m // Copyright (c) 2013 Matt. All rights reserved.

I ViewController.h

i) ViewControll

* ViewController_iPhone.xib
* ViewController_iPad.xib

#import "ViewController.h"

@interface ViewController ()

> Supporting Files @end
2 Frameworks
> Products @implementation ViewController

- (void)viewDidLoad
{
[super viewDidLoad];
// Do any additional setup after loading the view, typically from a nib.
¥
- (void)didReceiveMemoryWarning
{

[super didReceiveMemoryWarning);
// Dispose of any resources that can be recreated.

@end

Object Archiving
A custom class can be created. In this case, object archiving would be used. Classes must be saved and

conform to the NSCoding and NSCopying protocol. The NSCoding protocol encodes the object into an
archive and creates a new object when decoding the archive. NSCopying protocol creates a new
instance of the same class with all of the same properties and values, i.e., a duplicate.

Object Archiving sets an array of objects that can be archived by archiving (saving as a backup) the array
itself. In a property list, the developer would have to loop through all of the data and handle each piece
of data. Object Archiving takes all of the data that has been entered by the user, stores it in an array
object and then archives it to a binary property file. When the application is reloaded, the data is un-
archived. The array object is recreated and the restored data is extracted from the array object and
presented to the user.

Watch the video, iOS App Dev 105: The Foundation Classes — 9. NSCoding (10:44). This video implements
the NSCoding protocol to declare the methods that a class must implement so that instances of that
class can be encoded and decoded. This capability provides the basis for archiving for custom objects
created using classes.

—G)
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

SQLite

SQLlite is an iPhone embedded SQL database that uses the Structured Query Language. When dealing
with SQLite, the developer must open or create the database, find or add a table, add data, and close
the database. View the video, Create a MySQL/SQLite Database on a MAC (to use in iPhone App) (6:37),
which is part one of two parts. The first part shows the viewer how to create an SQLite database using
SQLite Manager, a Firefox add-on.

salte manager - Google Search | f SQUite Manager = Add-oms for k. x | +

€ | @ nips / /www.google.com) search

Go 8];‘ sqlite manager

sQLite Manager - Google Code

4 /code googe com/p/aqite-manager’

Data can be inserted into a database by using bind variables which is a placeholder in an SQL query. The
value is entered at runtime. A link to the database must also be set up when a new project is started.

SQLite can handle large amounts of data and can deal with calculations and queries, but it is
complicated and one has to deal with SQL statements. Watch part two, Xcode Database — How to
create, read, update and delete (CRUD) (9:35), to add the database created in part one to an Xcode
project which will add, update view and delete database information.

—(D
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

myData.sql

®e0o0 \ 3 MyData — i ViewController.m
P T A wOua [hooe Retos 3.5-inch) ”
" TQAaA0==8

=< »

From Desktop - SOUITE_O0K) {

ate, the, sState2, thet, sStated, thelD, sStated]

neoding):

Core Data

Core Data was added is iOS3. It is the best solution for handling complex data and calculations,
especially for those that are unfamiliar with SQL. It provides a visual interface to build the data model.
Core Data still uses SQLite, the Core Data interface and model editor. A data model editor is a program
that graphically creates a data model. There are also Objective-C wrappers available that are pre-built so
not much coding is required.

Core Data uses database terminology. Instead of referring to classes, the Core Data term for a
description of an object is entities, something about data can be stored. Entities have three types of
properties:

* Attributes — a variable instance

* Relationships — how entities relate to each other (one-to-many or many-to-one)

* Fetched Properties — similar to a relationship, but only the “related” entity will load if it is
actually used.

Key-value coding sets properties and/or retrieves values. Each value has a unique key.

A persistent store is the Core Data stored in SQLite. Core Data classes do all of the work so there is no
SQL coding required. A developer does not usually work with the persistent store directly. Rather, the
managed object context keeps track of what has changed since the last save. A managed object is an
instance which is created at runtime. Managed Object Context (or context) manages access to
persistent store and keeps track of what has changed since the last save. A fetch request is used to
retrieve a managed object from persistent store. With a fetch request, data is being pulled from where it
is actually stored.

—G)
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

Watch the video, Xcode 5 Tutorial: iOS 7 Core Data — Getting Started (16:19) to become familiar with the

basics of Core Data.

@ Xcode file Edit View Find Navigate Editor Product Debug Source Control Window _Help B$O3O 0D + T« Gk Mnl03IBPM PIVea Q iE

SUMMARY
This lesson introduced handling data in an iOS app. Storing data, determining where framework classes
can be used versus classes with custom functions, and determining how the data will be supplied to the

user interface were discussed.

ASSIGNMENTS
1. Practice Example - Handling Data
2. Quiz4

—G)
This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where

otherwise noted, is licensed under the Creative Commons Attribution 3.0 Unported License.
Authoring Organization: Collin College

Written by: Original Author, Elizabeth Pannell; Edited Version, Susan Sands

Copyright: © National Information Security, Geospatial Technologies Consortium (NISGTC)

