Objectives

- Describe common Transport layer protocols
- Explain the power of port numbers
- Define common TCP/IP applications such as HTTP, HTTPS, Telnet, e-mail (SMTP, POP3, and IMAP4), and FTP
Overview
Three Parts to this Area

- Transport Layer Protocols
- The Power of Port Numbers
- Common TCP/IP Applications
Transport Layer Protocols
How People Communicate

- Connection-oriented
 - Acknowledgement between two people beginning conversation
 - The conversation
 - Close of conversation
Figure 9.1 A connection-oriented session starting
• Connectionless
 – No opening acknowledge
 – Short message shouted across a room
 – No closing

• Session
 – Any single communication between computers
 – All session must begin and eventually end
Figure 9.2 A connection-oriented session ending
• Transmission Control Protocol (TCP)
 – In charge of connection-oriented communication
 – Most common type of TCP/IP session
Connection-oriented session

- Browser sends an ACK packet
- Server responds with a SYN, ACK packet
- Client sends an ACK, requests Web page
- Server sends Web page and a FIN packet
- Client responds with RST, ACK
• User Datagram Protocol (UDP)
 – Used by very few applications
 – Requires much less overhead than TCP
 – No start, no acknowledgement, no end
DHCP uses UDP

- Client broadcasts discovery packet
- Server responds with DHCP offer (sent directly to MAC address)
- Client sends DHCP request directly to server MAC address
- Server sends DHCP acknowledgement with IP configuration
- Client responds with DHCP lease
Figure 9.3 DHCP steps
• **Trivial File Transfer Protocol (TFTP)**
 - Uses UDP
 - Transfers files between computers
 - Does not have any data protection
 - Never use it over the Internet
Internet Control Message Protocol (ICMP)

- For connectionless communications that never need more than a single packet
- Handles maintenance issues like disconnect (host unreachable)
- Applications use ICMP to send status information to the other end of a session
• **PING**

 - Sends a single ICMP packet
 - Echo request
 - To an IP address
 - All computers (unless blocked by a firewall) respond with echo reply
C:\>ping www.google.com

PINGING www.google.com [74.125.95.147] WITH 32 BYTES OF DATA:
Reply from 74.125.95.147: bytes=32 time=70ms TTL=242

PING STATISTICS FOR 74.125.95.147:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 70ms, Maximum = 70ms, Average = 70ms

C:\>
- Internet Group Management Protocol (IGMP)
 - Used for multicasts
 - Routers use to determine a "group" membership
 - Class D IP addresses with network ID 224/8
More about multicast

- Does not assign IP addresses to hosts
- A multicast is assigned a certain 224/8 address
- Those who wish to receive this multicast must join the IGMP group
- Upstream router will send multicasts
Figure 9.5 IGMP in action
More about multicast

- Does not assign IP addresses to hosts
- A multicast is assigned a certain 224/8 address
- Those who wish to receive this multicast must join the IGMP group
- Upstream router will send multicasts
Transport Layer Protocols
• Port numbers
 – Memorize common port numbers
 – Every TCP/IP app requires a server and a client
 – Defined port number for popular (well-known) TCP/IP applications
• By the (port) numbers
 - 16-bit values (0 to 65,535)
 - Well-known port numbers (0-1023) for specific TCP/IP applications
 - Web servers use port number 80
 - Web client sends HTTP ACT to server (port 80)
 - Server replies using ephemeral port
Figure 9.6 HTTP ACK packet

Destination info: 147.58.201.183
Port: 80
Source info: 4.8.15.16
Figure 9.7 Dealing with the incoming packet
Figure 9.8 A more complete IP packet

Destination info:
147.58.201.183
Port: 80
Source info:
4.8.15.16
Ephemeral Port: 52142
• Ephemeral ports
 – Pseudo-randomly generated by Web client
 – Ephemeral port numbers 1024-5000
 – Dynamic or private port numbers 49152-65535
 – IANA recommends using only 49152-65535
Figure 9.9 Returning the packet
• Registered ports

 - 1024-49151
 - Less-common TCP/IP applications register their ports with IANA
 - Most operating systems avoid registered port numbers and use dynamic/private ports
Summary of port numbers

- 0-1023 well-known ports
- 1024-49151 registered ports
- 49152-65535 dynamic or private ports
• Using ports in a session

– Both computers keep track of status

• Status info held in RAM
• Socket or endpoint is one side’s session information
• Socket pairs or endpoints refer to data each computer stores about the connection
• Session or connection refers to a connection in general
• Endpoint information
 – Source and destination for one session
 – Many simultaneous sessions
 – Use `netstat -n` to see sessions
 • Usually shows many connections
 • TCPView for Windows: dynamic
 • Net Activity Viewer for Linux
Figure 9.10 Two open windows
Figure 9.11 TCPView in action
Figure 9.12 Net Activity Viewer

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Local Port</th>
<th>State</th>
<th>Remote Address</th>
<th>Remote Port</th>
<th>Remote Host</th>
<th>Pid</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp</td>
<td>901 swat</td>
<td>LISTEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>27015</td>
<td>LISTEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>3306 mysql</td>
<td>LISTEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>139 netbios-ssn</td>
<td>LISTEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>10000 webmin</td>
<td>LISTEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>80 www</td>
<td>LISTEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>22 ssh</td>
<td>LISTEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>631 ip</td>
<td>LISTEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>445 microsoft-ds</td>
<td>LISTEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>58694</td>
<td>ESTABLISHED</td>
<td>91.189.94.9</td>
<td>80 www</td>
<td>avocado.canonical.com</td>
<td>8485</td>
<td>firefox</td>
</tr>
<tr>
<td>tcp</td>
<td>42787</td>
<td>CLOSED</td>
<td>91.189.90.19</td>
<td>80 www</td>
<td>yangmei.canonical.com</td>
<td>8485</td>
<td>firefox</td>
</tr>
<tr>
<td>tcp</td>
<td>38186</td>
<td>CLOSED</td>
<td>91.189.90.19</td>
<td>443 https</td>
<td>yangmei.canonical.com</td>
<td>8485</td>
<td>firefox</td>
</tr>
<tr>
<td>tcp</td>
<td>38191</td>
<td>CLOSED</td>
<td>91.189.90.19</td>
<td>443 https</td>
<td>yangmei.canonical.com</td>
<td>8485</td>
<td>firefox</td>
</tr>
<tr>
<td>tcp</td>
<td>38189</td>
<td>CLOSED</td>
<td>91.189.90.19</td>
<td>443 https</td>
<td>yangmei.canonical.com</td>
<td>8485</td>
<td>firefox</td>
</tr>
<tr>
<td>tcp</td>
<td>38192</td>
<td>CLOSED</td>
<td>91.189.90.19</td>
<td>443 https</td>
<td>yangmei.canonical.com</td>
<td>8485</td>
<td>firefox</td>
</tr>
<tr>
<td>tcp</td>
<td>38188</td>
<td>CLOSED</td>
<td>91.189.90.19</td>
<td>443 https</td>
<td>yangmei.canonical.com</td>
<td>8485</td>
<td>firefox</td>
</tr>
<tr>
<td>tcp</td>
<td>43699</td>
<td>CLOSED</td>
<td>209.85.225.97</td>
<td>443 https</td>
<td>yy-in-f97.google.com</td>
<td>8485</td>
<td>firefox</td>
</tr>
<tr>
<td>tcp</td>
<td>38190</td>
<td>CLOSED</td>
<td>91.189.90.19</td>
<td>443 https</td>
<td>yangmei.canonical.com</td>
<td>8485</td>
<td>firefox</td>
</tr>
<tr>
<td>tcp6</td>
<td>5900</td>
<td>LISTEN</td>
<td></td>
<td></td>
<td></td>
<td>7066</td>
<td>vino-server</td>
</tr>
<tr>
<td>tcp6</td>
<td>22 ssh</td>
<td>LISTEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>udp</td>
<td>27015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6133</td>
<td>srcds_i486</td>
</tr>
<tr>
<td>udp</td>
<td>137 netbios-ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>udp</td>
<td>137 netbios-ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>udp</td>
<td>138 netbios-dgm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>udo</td>
<td>138 netbios-dgm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Established: 1/23 Sent: 23 KB +645 B/s Received: 91 KB +315 B/s
Connection Status

- State changes continually
- Listening port or open port
- ESTABLISHED ports are active, working endpoint pairs
- CLOSE_WAIT indicates that a client is making a graceful closure
- TIME_WAIT indicates a lost connection
• Detecting local program in a connection
 - `Netstat -ano` will show local process ID (PID) for each connection
Figure 9.13 Process Explorer
• Determining Good vs. Bad
 – Memorize a bunch of common ports
 – Learn how to use NETSTAT
 – Learn the ports that normally run on your operating system
 – Research processes you don’t recognize
 – Get rid of bad processes
Common TCP/IP Applications
• Web Servers
 – Store HTML documents
 – XHTML is an updated HTML with XML syntax
Figure 9.14 My router’s Web page

<table>
<thead>
<tr>
<th>Router Information</th>
<th>Services</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router Name</td>
<td>DHCP Server</td>
<td>Total Available</td>
</tr>
<tr>
<td>Router Model</td>
<td>WRT-radiauth</td>
<td>13.8 MB / 16.0 MB</td>
</tr>
<tr>
<td>LAN MAC</td>
<td>WRT-rflow</td>
<td>Free</td>
</tr>
<tr>
<td>WAN MAC</td>
<td>MAC-upd</td>
<td>Used</td>
</tr>
<tr>
<td>Wireless MAC</td>
<td>Samba Mount</td>
<td>Buffers</td>
</tr>
<tr>
<td>WAN IP</td>
<td></td>
<td>Cached</td>
</tr>
<tr>
<td>LAN IP</td>
<td></td>
<td>Active</td>
</tr>
<tr>
<td>WAN IP</td>
<td></td>
<td>Inactive</td>
</tr>
</tbody>
</table>

Wireless Statistics

<table>
<thead>
<tr>
<th>Radio</th>
<th>Mode</th>
<th>Network</th>
<th>SSID</th>
<th>Channel</th>
<th>Xmit</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio is Off</td>
<td>AP</td>
<td>Disabled</td>
<td>TotalTemp</td>
<td>1</td>
<td>28 miW</td>
<td>54 Mbps</td>
</tr>
</tbody>
</table>
Figure 9.15 XHTML source code
Web browsers (client side)
- Request HTML pages from Web servers
- Enter address into browser
- All browsers have a default Web page
- Web sites use text addresses using DNS
• **HTTP**
 - Stands for **Hypertext Transport Protocol**
 - Underlying protocol of the Web
 - Uses port 80 to transmit Web page data
 - `http://` at beginning of Web server address
• **HTTP weakness**
 – Relays commands without reference to any commands the user previously executed
 – Difficult to design complex and interactive Web pages
 – Other technologies enhance HTTP
 • JavaScript/AJAX
 • Server-side scripting
 • Adobe Flash
 • Cookies
• Publishing Web pages
 – Web server will “host” a HTML document
 – You can self-host
 • Install Web server software
 • Acquire a public IP address
 • Time-consuming and challenging
 – Host through your ISP
 – Use a Web hosting service company
 – Free Web hosting (nothing is free)
Web Servers and Web Clients

- Web server serves up Web pages
- Listens on port 80
- Fetches and sends requested HTML pages
- To create a Web server
 - Install Web server software
 - Connect computer to the Web
• Web Server Software
 – **Microsoft Internet Information Services (IIS)**
 • 20-connection limit on non-server versions of Windows
 • Only run IIS on Server versions of Windows
 – **Apache Server** runs on UNIX/Linux/Windows
 • On over 50% of Internet Web servers
 • Free
 • Non-GUI
 • Web administrators use an add-on GUI (Webmin)
Figure 9.16 IIS in action
Figure 9.17 Webmin Apache module
• Web Client Software (browsers)
 – Request and display Web pages
 – Many have multiple functions
 – Most popular
 • MS Internet Explorer (IE)
 • Mozilla Firefox
 • Apple Safari
 • Opera
 • Google Chrome
Secure Sockets Layer and HTTPS

- HTTP not secure
- Requirements for secure Internet apps
 - Authentication
 - Encryption
 - Nonrepudiation
- SSL and HTTPS offer security
Secure Sockets Layer (SSL)
- Netscape-developed protocol
- Encrypts data with a public key
- Sends encrypted data over an SSL connection
- Data decrypted on receiving end with private key
- Supported by Web browsers and servers
- Many Web sites use SSL for confidential data
- Look for HTTPS or small lock in browser
HTTP over SSL

- Uses TCP port 443
- Being replaced by Transport Layer Security (TLS)
Figure 9.18 Secure Web Page
• Telnet

- First networks were dumb terminals connected to more than one mainframe
- Run commands as if sitting at the mainframe
- Still exists as a way to connect remotely
- Uses port 23
- Used to administer servers
- Requires long on with user name and password
Ubuntu 8.04.1
VMubunti login: vmuser
Password:
Last login: Mon Nov 10 11:30:01 CST 2008 from michaels.totalhome on pts/1
Linux VMubunti 2.6.24-19-generic #1 SMP Fri Jul 11 23:41:49 UTC 2008 i686

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

To access official Ubuntu documentation, please visit:
http://help.ubuntu.com/
vmuser@VMubunti:~$
Telnet (cont.)

- Has no form of encryption
- Rarely used on the Internet
- Replaced by Secure Shell (SSH), which has encryption
- Telnet still used on trusted networks
- Most routers support Telnet (often turned off for security)
• **Telnet (cont.)**

 - Most OSs have built-in Telnet clients and servers
 - Most servers allow access using Telnet
 - Third-party clients and servers have more features
Figure 9.21 freeSSHD
- **Telnet (cont.)**

 - Configuring a Telnet client
 - Host name (name or IP address)
 - User login name
 - Password
Figure 9.22 Ubuntu Telnet
Figure 9.23 PuTTY
• Rlogin, RSH, and RCP
 – Old UNIX remote programs
 – Remote access and control of servers
 – No encryption
 – Do not use across the Internet

• Rlogin – interactive, automatic login, TCP port 513
• RSH – non-interactive, sends a single command to server, use in scripts, TCP port 514
• RCP – copy files, use in scripts, shares TCP port 514 with RSH
• SSH and the Death of Telnet
 – Has replaced Telnet
 – Encrypts data
 – Creates a terminal connection to remote host
 – TCP port 22
• Electronic mail (e-mail)
 – Major contributor to Internet revolution
 – Streamlined junk mail industry
 – Provides quick way for people to communicate
 – Sends messages and attachments
 – Normally offered free by ISPs
 – Most e-mail clients have simple text editors
• Electronic mail (e-mail)
 - Messages stored on e-mail server
 - Most e-mail clients notify you when new message arrives or automatically download
 - You manage messages (forward, delete, etc.)
 - Most clients delete downloaded messages
 - E-mail programs use application-level protocols
• Simple Mail Transfer Protocol (SMTP)
 – Used by clients to send e-mail
 – TCP port 25
• **Post Office Protocol version 3 (POP3)**
 - Clients use to retrieve e-mail from SMTP servers
 - TCP port 110
 - Used by most e-mail clients
Internet Message Access Protocol version 4 (IMAP4)

- Alternative to POP#
- Retrieves e-mail from an e-mail server
- TCP port 143
- Supports features not supported by POP3
 - Search messages by keyword
 - Select messages before download
 - Supports folders on IMAP4 servers
• Alternatives to SMTP, POP3, and IMAP4

 – Web-based e-mail
 • Access your e-mail from anywhere
 • Free
 • Handy for throw-away accounts
 • Do not confuse with Web-based e-mail services provided by traditional SMTP/POP/IMAP accounts

 – Proprietary solutions
Figure 9.24 Gmail in action
- E-mail Server software
 - E-mail server market fragmented
 - Sendmail for UNIX/Linux is leader (SMTP only)
 - No GUI interface
 - Third-part interfaces (Webmin)
 - Controls about 20% of e-mail servers
 - Must use a POP3 or IMAP server program to support e-mail clients
 - Eudora’s Qpopper sends mail to POP3 e-mail clients
Figure 9.25 Webmin with the sendmail module
• E-mail Server software (cont.)
 – MS Exchange Server (both SMTP and POP3)
 – Mailboxes are holding areas on server for each user’s messages
 – Server arranges incoming messages
 – Server returns messages with unknown recipient
 – Difficult to manage
Figure 9.26 Microsoft Exchange Server
- E-mail Client Software
 - Enables you to send, receive, and organize
 - Communicates with SMTP server to send
 - Communicates with IMAP or POP3 server to download messages
 - Hundreds of e-mail client programs
 - Microsoft Windows Mail
 - Microsoft Outlook
 - Mozilla Thunderbird
 - Qualcomm Eudora
Figure 9.27 Windows Mail
Figure 9.28 Entering server information in Windows Mail
• Configuring E-mail Client Software
 – Obtain server’s address and your mailbox user name and password
 – Enter POP3 or IMAP4 server’s IP address
 – Enter user name and password
• File Transfer Protocol (FTP)
 – Original Internet file transfer protocol
 – Faster and more reliable than HTTP
 – Includes security and data integrity
 – TCP ports 20 and 21
 – Anonymous or secured sites
 – Some are both
• FTP Servers
 – Store files
 – Accept incoming connections
 – Verify user names and passwords
 – Transfer files
 – Easy to set up an FTP server
 – UNIX/Linux have built-in FTP servers
 – Third-party servers better
• FTP Clients
 – Access FTP servers many ways
 • Web site
 • Command line
 • FTP client applications
 – Most Web browsers support FTP, but lack features
 – Dedicated FTP clients work best
 • FileZilla client
 • Mozilla FireFTP add-on to Firefox
Figure 9.29 FileZilla Server
Passive vs. Active FTP

- Traditional FTP uses active process
 - Clients send FTP request on TCP port 21
 - Server responds on an ephemeral destination port with TCP port 20 as the source port
- Passive FTP server doesn’t use port 20
 - Works with NAT
 - Client must support passive FTP

Figure 9.30 FTP in Web browser

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Last Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCS</td>
<td>2 KB</td>
<td>9/23/2008 11:53 PM</td>
</tr>
<tr>
<td>README</td>
<td>8 KB</td>
<td>8/5/2007 12:00 AM</td>
</tr>
<tr>
<td>README_ABOUT_BZ2_FILES</td>
<td>1 KB</td>
<td>3/18/2003 12:00 AM</td>
</tr>
<tr>
<td>dist</td>
<td>7 KB</td>
<td>7/22/2005 12:00 AM</td>
</tr>
<tr>
<td>index.html</td>
<td>3 KB</td>
<td>9/23/2008 11:53 PM</td>
</tr>
<tr>
<td>linux</td>
<td>6 KB</td>
<td>6/25/2008 12:37 AM</td>
</tr>
<tr>
<td>lost+found</td>
<td>10 KB</td>
<td>10/27/1998 12:00 AM</td>
</tr>
<tr>
<td>media</td>
<td>9 KB</td>
<td>9/23/2008 11:35 PM</td>
</tr>
<tr>
<td>scrn</td>
<td>11 KB</td>
<td>6/2/2008 6:27 PM</td>
</tr>
<tr>
<td>site</td>
<td>18 KB</td>
<td>11/5/2003 12:00 AM</td>
</tr>
<tr>
<td>software</td>
<td>9 KB</td>
<td>9/26/2008 11:43 AM</td>
</tr>
<tr>
<td>tools</td>
<td>4 KB</td>
<td>4/30/2008 12:00 AM</td>
</tr>
</tbody>
</table>
Figure 9.31 Author’s FireFTP hard at work
<table>
<thead>
<tr>
<th>Application</th>
<th>TCP/UDP</th>
<th>Port</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>TCP</td>
<td>80</td>
<td>The Web</td>
</tr>
<tr>
<td>HTTPS</td>
<td>TCP</td>
<td>443</td>
<td>The Web, securely</td>
</tr>
<tr>
<td>Telnet</td>
<td>TCP</td>
<td>23</td>
<td>Terminal emulation</td>
</tr>
<tr>
<td>SSH</td>
<td>TCP</td>
<td>22</td>
<td>Secure terminal emulation</td>
</tr>
<tr>
<td>SMTP</td>
<td>TCP</td>
<td>25</td>
<td>Sending e-mail</td>
</tr>
<tr>
<td>POP3</td>
<td>TCP</td>
<td>110</td>
<td>E-mail delivery</td>
</tr>
<tr>
<td>IMAP4</td>
<td>TCP</td>
<td>143</td>
<td>E-mail delivery</td>
</tr>
<tr>
<td>FTP</td>
<td>TCP</td>
<td>20/21</td>
<td>File transfer</td>
</tr>
<tr>
<td>TFTP</td>
<td>UDP</td>
<td>69</td>
<td>File transfer</td>
</tr>
</tbody>
</table>