Lesson 8: Creating and Configuring Virtual Machine Storage

MOAC 70-410: Installing and Configuring Windows Server 2012
Overview

• Exam Objective 3.2: Create and configure virtual machine storage.
• Working with Virtual Disks
• Connecting to a SAN
Working with Virtual Disks

Lesson 8: Creating and Configuring Virtual Machine Storage
Working with Virtual Disks

• Hyper-V uses a virtual hard disk (VHD) format to package part of the space on a physical disk to appear to the VM as though it is a physical hard drive.

• You can construct virtual storage subsystems to emulate almost any physical storage solution.

• The New Virtual Machine Wizard creates the following virtual storage subsystem:
 o 2 IDE (Integrated Drive Electronics) controllers (system drive + DVD drive)
 o 1 SCSI (Small Computer Systems Interface) controller (unpopulated)
Working with Virtual Disks

The default VM drive controller configuration
Virtual Disk Formats

Three types of VHD formats:

- **Fixed hard disk image**: An image file of a specified size in which all the disk space required to create the image is allocated during its creation.

- **Dynamic hard disk image**: An image file with a specified maximum size, which starts out small and expands as needed to accommodate the data the system writes to it.

- **Differencing hard disk image**: A child image file associated with a specific parent image. The system writes all changes made to the data on the parent image file to the child image, to facilitate a rollback at a later time.
Virtual Hard Disk Formats

- **VHD**
 - Limited to 2 TB
 - Compatible with all versions of Hyper-V, Virtual Server, and Virtual PC

- **VHDX**
 - Up to 64 TB
 - Support 4 KB logical sector sizes
 - Larger block sizes (up to 256 MB)
 - Not backwards compatible
Creating Virtual Disks

• Hyper-V allows you to create virtual hard disks as a part of a virtual machine, or create them later and add them to a VM.
• Hyper-V Manager provides access to most of the VHD parameters.
• Windows PowerShell provides the most granular control.
Creating a Virtual Disk with a VM

The New Virtual Machine Wizard includes a Connect Virtual Hard Disk page, with which you can add a single disk to your new VM with these options:

- **Create a virtual hard disk**: Enables you to specify the name, location, and size of a new virtual hard disk, but you can only create a dynamically expanding disk using the VHDX format.

- **Use an existing virtual hard disk**: Enables you to specify the location of an existing VHD or VHDX disk, which the VM will presumably use as its system disk.

- **Attach a virtual hard disk later**: Prevents the wizard from adding any virtual disks to the VM configuration. The assumption is that you will manually add a disk later, before you start the virtual machine.
Create a New Virtual Disk

The Choose Disk Format page of the New Virtual Hard Disk Wizard
Create a New Virtual Disk

The Choose Disk Type page of the New Virtual Hard Disk Wizard

© 2013 John Wiley & Sons, Inc.
Create a New Virtual Disk

The Name and Location page of the New Virtual Hard Disk Wizard
Create a New Virtual Disk

The Configure Disk page of the New Virtual Hard Disk Wizard
Create a New Virtual Disk

The Completing the New Virtual Hard Disk Wizard page of the New Virtual Hard Disk Wizard
Adding Virtual Disks to Virtual Machines

- If you chose the **Attach a virtual hard disk later** option when creating your virtual machine, you will need to attach a virtual hard drive to one of your controllers.

- In the VM’s settings you will see 2 IDE controllers (IDE 0 and IDE 1) and 1 SCSI controller.
Add a Virtual Disk to a Virtual Machine

The IDE Controller interface in the Settings dialog box
Add a Virtual Disk to a Virtual Machine

The Hard Drive interface in the Settings dialog box
Creating Differencing Disks

- Allows you to create a cloned version of a baseline installation
- The parent disk is the baseline installation
- The child is the differencing disk
- Make changes to the child differencing disk without changing the baseline
- You can revert back to the baseline installation anytime
- Excellent tool for testing or labs
Create a Cloned Installation with a Differencing Disk

The Configure Disk page in the New Virtual Hard Disk Wizard, when creating a differencing disk.
Configuring Pass-Through Disks

- A **pass-through disk** is a type of virtual disk that points not to an area of space on a physical disk, but to a physical disk drive itself, installed on the host computer.

- The VM must have exclusive access to the physical disk.

- You must take the disk offline in the parent operating system.
Configuring Pass-Through Disks

An offline disk in the Disk Management snap-in
Modifying Virtual Hard Disks

- You can edit a virtual hard disk, whether you have attached it to a VM or not.
- Use the **Edit Virtual Hard Disk Wizard** in the Hyper-V Manager.
Edit a Virtual Hard Disk

The Locate Disk page in the Edit Virtual Hard Disk Wizard

© 2013 John Wiley & Sons, Inc.
Edit a Virtual Hard Disk

The Choose Action page in the Edit Virtual Hard Disk Wizard

© 2013 John Wiley & Sons, Inc.
Edit a Virtual Hard Disk

The Completing the Edit Virtual Hard Disk Wizard page in the Edit Virtual Hard Disk Wizard
Mount a Virtual Hard Disk

The Disk Management snap-in
Mount a Virtual Hard Disk

The Attach Virtual Hard Disk dialog box
Creating Snapshots

- A **snapshot** is a captured image of the state, data, and hardware configuration of a virtual machine at a particular moment in time.
- Offers a convenient way for administrators to revert a virtual machine to a previous state at will.
- Select **Snapshot** from the **Actions** pane.
- The system creates a snapshot file, with an **AVHD** or **AVHDX** extension in the same folder as the virtual hard disk file.
Creating Snapshots

A snapshot in Hyper-V Manager
Connecting to a SAN

Lesson 8: Creating and Configuring Virtual Machine Storage
Connecting to a SAN

- A **storage area network (SAN)** is simply a network dedicated to high-speed connections between servers and storage devices.
- A SAN consists of one or more drive arrays equipped with network interface adapters, which you connect to your servers using standard twisted pair or fiber optic network cables.
- A SAN-connected server has a minimum of two network adapters—one for the standard LAN connection, and one for the SAN.
Connecting to a SAN

A server connected to a SAN
Advantages of SANs

• Avoid the limitations imposed by the maximum number of devices you can connect directly to a computer.
• Provide added flexibility in their communications capabilities.
• Can also greatly extend the distances between servers and storage devices.
Clustering in a SAN

Because any device on a SAN can communicate with any other device on the same SAN, high-speed data transfers can occur in the following ways:

- **Server to storage:** Servers access storage devices over the SAN just as if they were connected directly to the computer.
- **Server to server:** Servers use the SAN to communicate directly with each other at high speeds to avoid flooding the LAN with traffic.
- **Storage to storage:** Storage devices communicate among themselves without server intervention (e.g., performing backups from one medium to another or to mirror drives on different arrays).

By connecting redundant servers to the same network, enabling them to access the same data storage devices, you create fault tolerance—clustering.
Clustering in a SAN

Multiple servers connected to a SAN

Local Area Network

Storage Area Network

© 2013 John Wiley & Sons, Inc.
SAN Technologies

- Hard drive arrays directly connected to a server consist of multiple drives and a SCSI interface.
- Some include RAID controllers, while some are JBOD (Just a Bunch of Disks).
- Drive arrays for SANs are more complex because they also include support for networking and intelligent agents that provide advanced functions, like serverless backups.
Using Fibre Channel

• **Fibre Channel** is a high-speed serial networking technology that was originally designed for use with supercomputers, but which is now associated primarily with storage area networking.

• Supports various network media, transmission speeds, topologies, and upper-level protocols

• Its primary disadvantage is that it requires specialized hardware that can be extremely expensive.
Connecting Virtual Machines to a SAN

• Windows Server 2012 Hyper-V now supports the creation of virtual Fibre channel adapters.
• This is essentially a pass-through device that enables a virtual machine to access a physical Fibre Channel adapter installed in the computer, and through that, the external resources connected to the SAN.
Connecting Virtual Machines to a SAN

WWNNs and WWPNs in a virtual SAN
Connecting Virtual Machines to a SAN

A Fibre Channel adapter in a VM
Lesson Summary

• Hyper-V uses a specialized virtual hard disk (VHD) format to package part of the space on a physical disk and make it appear to the virtual machine as though it is physical hard disk drive.

• A dynamic hard disk image is an image file with a specified maximum size, which starts out small and expands as needed to accommodate the data the system writes to it.

• A differencing hard disk image is a child image file associated with a specific parent image. The system writes all changes made to the data on the parent image file to the child image, to facilitate a rollback at a later time.
Lesson Summary

• VHDX image files in Windows Server 2012 can be as large as 64 TB, and they also support 4 KB logical sector sizes, to provide compatibility with new 4 KB native drives.

• A pass-through disk is a type of virtual disk that points not to an area of space on a physical disk, but to a physical disk drive itself, installed on the host computer.

• In Hyper-V, a snapshot is a captured image of the state, data, and hardware configuration of a virtual machine at a particular moment in time.

• The specialized networking technologies used to build Fibre Channel SANs have, in the past, made it difficult to use them with virtualized servers. However, Windows Server 2012 Hyper-V now supports the creation of virtual Fibre channel adapters.
Copyright 2013 John Wiley & Sons, Inc.
All rights reserved. Reproduction or translation of this work beyond that named in Section 117 of the 1976 United States Copyright Act without the express written consent of the copyright owner is unlawful. Requests for further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these programs or from the use of the information contained herein.